Loading…

Involutive gradings of JBW-triple factors

Let ( B + , B − ) be an involutive grading of a JBW * -triple factor A with associated involutive triple automorphism φ . When the JBW * -subtriple B + of A is not a JBW * -triple factor there exists a non-zero Peirce weak * -closed inner ideal J in A with Peirce spaces J 0 , J 1 , and J 2 such that...

Full description

Saved in:
Bibliographic Details
Published in:Revista matemática complutense 2010-07, Vol.23 (2), p.383-413
Main Authors: Edwards, C. Martin, Morton, Alastair G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c240t-6f02acf2010113f61458f5a60ae98a1cbe256b45064601e27d221cab3f7d2f3e3
container_end_page 413
container_issue 2
container_start_page 383
container_title Revista matemática complutense
container_volume 23
creator Edwards, C. Martin
Morton, Alastair G.
description Let ( B + , B − ) be an involutive grading of a JBW * -triple factor A with associated involutive triple automorphism φ . When the JBW * -subtriple B + of A is not a JBW * -triple factor there exists a non-zero Peirce weak * -closed inner ideal J in A with Peirce spaces J 0 , J 1 , and J 2 such that When both B + and B − are JBW * -triple factors it is shown that either the situation reduces to that above with J 0 or J 2 equal to zero or, in the case that B + (or, by symmetry, B − ) contains a unitary tripotent v , that v is unitary in A , and where H ( A 2 ( v ), φ ) is the JBW * -algebra of φ -invariant elements in the JBW * -algebra A 2 ( v ), and S ( A 2 ( v ), φ ) is the JBW * -triple of − φ -invariant elements of A 2 ( v ). In the special case in which A is a discrete W * -factor it is shown that such a unitary tripotent always exists in B + (or B − ), thereby completing the description of involutive gradings in this case.
doi_str_mv 10.1007/s13163-009-0021-z
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s13163_009_0021_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s13163_009_0021_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c240t-6f02acf2010113f61458f5a60ae98a1cbe256b45064601e27d221cab3f7d2f3e3</originalsourceid><addsrcrecordid>eNp9jz9PwzAQxS0EEqXwAdiyMhju_C_OCBWUokosIEbLce0oVUgqO61EPz2uwsxwd2-4d-9-hNwi3CNA-ZCQo-IUoMrFkB7PyAwrrSnTUJ5njbyiuelLcpXSFkBWQosZuVv1h6Hbj-3BF020m7ZvUjGE4u3pi46x3XW-CNaNQ0zX5CLYLvmbvzknny_PH4tXun5frhaPa-qYgJGqAMy6wAAhxwWFQuogrQLrK23R1Z5JVQsJSihAz8oNY-hszUNWgXs-JzjddXFIKfpgdrH9tvHHIJgTq5lYTWY1J1ZzzB42eVLe7RsfzXbYxz6_-Y_pF6IIVkc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Involutive gradings of JBW-triple factors</title><source>Springer Nature</source><creator>Edwards, C. Martin ; Morton, Alastair G.</creator><creatorcontrib>Edwards, C. Martin ; Morton, Alastair G.</creatorcontrib><description>Let ( B + , B − ) be an involutive grading of a JBW * -triple factor A with associated involutive triple automorphism φ . When the JBW * -subtriple B + of A is not a JBW * -triple factor there exists a non-zero Peirce weak * -closed inner ideal J in A with Peirce spaces J 0 , J 1 , and J 2 such that When both B + and B − are JBW * -triple factors it is shown that either the situation reduces to that above with J 0 or J 2 equal to zero or, in the case that B + (or, by symmetry, B − ) contains a unitary tripotent v , that v is unitary in A , and where H ( A 2 ( v ), φ ) is the JBW * -algebra of φ -invariant elements in the JBW * -algebra A 2 ( v ), and S ( A 2 ( v ), φ ) is the JBW * -triple of − φ -invariant elements of A 2 ( v ). In the special case in which A is a discrete W * -factor it is shown that such a unitary tripotent always exists in B + (or B − ), thereby completing the description of involutive gradings in this case.</description><identifier>ISSN: 1139-1138</identifier><identifier>EISSN: 1988-2807</identifier><identifier>DOI: 10.1007/s13163-009-0021-z</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Mathematics ; Mathematics and Statistics ; Topology</subject><ispartof>Revista matemática complutense, 2010-07, Vol.23 (2), p.383-413</ispartof><rights>Revista Matemática Complutense 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c240t-6f02acf2010113f61458f5a60ae98a1cbe256b45064601e27d221cab3f7d2f3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Edwards, C. Martin</creatorcontrib><creatorcontrib>Morton, Alastair G.</creatorcontrib><title>Involutive gradings of JBW-triple factors</title><title>Revista matemática complutense</title><addtitle>Rev Mat Complut</addtitle><description>Let ( B + , B − ) be an involutive grading of a JBW * -triple factor A with associated involutive triple automorphism φ . When the JBW * -subtriple B + of A is not a JBW * -triple factor there exists a non-zero Peirce weak * -closed inner ideal J in A with Peirce spaces J 0 , J 1 , and J 2 such that When both B + and B − are JBW * -triple factors it is shown that either the situation reduces to that above with J 0 or J 2 equal to zero or, in the case that B + (or, by symmetry, B − ) contains a unitary tripotent v , that v is unitary in A , and where H ( A 2 ( v ), φ ) is the JBW * -algebra of φ -invariant elements in the JBW * -algebra A 2 ( v ), and S ( A 2 ( v ), φ ) is the JBW * -triple of − φ -invariant elements of A 2 ( v ). In the special case in which A is a discrete W * -factor it is shown that such a unitary tripotent always exists in B + (or B − ), thereby completing the description of involutive gradings in this case.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Topology</subject><issn>1139-1138</issn><issn>1988-2807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9jz9PwzAQxS0EEqXwAdiyMhju_C_OCBWUokosIEbLce0oVUgqO61EPz2uwsxwd2-4d-9-hNwi3CNA-ZCQo-IUoMrFkB7PyAwrrSnTUJ5njbyiuelLcpXSFkBWQosZuVv1h6Hbj-3BF020m7ZvUjGE4u3pi46x3XW-CNaNQ0zX5CLYLvmbvzknny_PH4tXun5frhaPa-qYgJGqAMy6wAAhxwWFQuogrQLrK23R1Z5JVQsJSihAz8oNY-hszUNWgXs-JzjddXFIKfpgdrH9tvHHIJgTq5lYTWY1J1ZzzB42eVLe7RsfzXbYxz6_-Y_pF6IIVkc</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Edwards, C. Martin</creator><creator>Morton, Alastair G.</creator><general>Springer Milan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100701</creationdate><title>Involutive gradings of JBW-triple factors</title><author>Edwards, C. Martin ; Morton, Alastair G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c240t-6f02acf2010113f61458f5a60ae98a1cbe256b45064601e27d221cab3f7d2f3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Edwards, C. Martin</creatorcontrib><creatorcontrib>Morton, Alastair G.</creatorcontrib><collection>CrossRef</collection><jtitle>Revista matemática complutense</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Edwards, C. Martin</au><au>Morton, Alastair G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involutive gradings of JBW-triple factors</atitle><jtitle>Revista matemática complutense</jtitle><stitle>Rev Mat Complut</stitle><date>2010-07-01</date><risdate>2010</risdate><volume>23</volume><issue>2</issue><spage>383</spage><epage>413</epage><pages>383-413</pages><issn>1139-1138</issn><eissn>1988-2807</eissn><abstract>Let ( B + , B − ) be an involutive grading of a JBW * -triple factor A with associated involutive triple automorphism φ . When the JBW * -subtriple B + of A is not a JBW * -triple factor there exists a non-zero Peirce weak * -closed inner ideal J in A with Peirce spaces J 0 , J 1 , and J 2 such that When both B + and B − are JBW * -triple factors it is shown that either the situation reduces to that above with J 0 or J 2 equal to zero or, in the case that B + (or, by symmetry, B − ) contains a unitary tripotent v , that v is unitary in A , and where H ( A 2 ( v ), φ ) is the JBW * -algebra of φ -invariant elements in the JBW * -algebra A 2 ( v ), and S ( A 2 ( v ), φ ) is the JBW * -triple of − φ -invariant elements of A 2 ( v ). In the special case in which A is a discrete W * -factor it is shown that such a unitary tripotent always exists in B + (or B − ), thereby completing the description of involutive gradings in this case.</abstract><cop>Milan</cop><pub>Springer Milan</pub><doi>10.1007/s13163-009-0021-z</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1139-1138
ispartof Revista matemática complutense, 2010-07, Vol.23 (2), p.383-413
issn 1139-1138
1988-2807
language eng
recordid cdi_crossref_primary_10_1007_s13163_009_0021_z
source Springer Nature
subjects Algebra
Analysis
Applications of Mathematics
Geometry
Mathematics
Mathematics and Statistics
Topology
title Involutive gradings of JBW-triple factors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A22%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involutive%20gradings%20of%20JBW-triple%20factors&rft.jtitle=Revista%20matem%C3%A1tica%20complutense&rft.au=Edwards,%20C.%20Martin&rft.date=2010-07-01&rft.volume=23&rft.issue=2&rft.spage=383&rft.epage=413&rft.pages=383-413&rft.issn=1139-1138&rft.eissn=1988-2807&rft_id=info:doi/10.1007/s13163-009-0021-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s13163_009_0021_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c240t-6f02acf2010113f61458f5a60ae98a1cbe256b45064601e27d221cab3f7d2f3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true