Loading…

Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: formulation development and in vitro evaluation

Osimertinib (OB) is a third-generation irreversible tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR), overexpressed in non-small cell lung cancer. Systemic administration of drug often results in poor drug levels at the primary tumor in the lungs and is associated with...

Full description

Saved in:
Bibliographic Details
Published in:Drug delivery and translational research 2022-10, Vol.12 (10), p.2474-2487
Main Authors: Sawant, Shruti S., Patil, Suyash M., Shukla, Snehal K., Kulkarni, Nishant S., Gupta, Vivek, Kunda, Nitesh K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-756847b9a0b0b310f698c245e62cdaa082e3d30b132c89333973dfb4b7a38ecc3
cites cdi_FETCH-LOGICAL-c324t-756847b9a0b0b310f698c245e62cdaa082e3d30b132c89333973dfb4b7a38ecc3
container_end_page 2487
container_issue 10
container_start_page 2474
container_title Drug delivery and translational research
container_volume 12
creator Sawant, Shruti S.
Patil, Suyash M.
Shukla, Snehal K.
Kulkarni, Nishant S.
Gupta, Vivek
Kunda, Nitesh K.
description Osimertinib (OB) is a third-generation irreversible tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR), overexpressed in non-small cell lung cancer. Systemic administration of drug often results in poor drug levels at the primary tumor in the lungs and is associated with systemic side effects. In this study, we developed inhalable OB liposomes that can locally accumulate at the tumor site thereby limiting systemic toxicity. OB was loaded into liposomes via active and passive loading methods. The OB active liposomes achieved a higher encapsulation (78%) compared to passive liposomes (25%). The liposomes (passive and active) exhibited excellent aerosolization performance with an aerodynamic diameter of 4 µm and fine particle fraction of 82%. In H1975 cells, OB active and passive liposomes reduced IC 50 by 2.2 and 1.2-fold, respectively, compared to free drug. As the OB active liposomes demonstrated higher cytotoxicity compared to OB passive liposomes, they were further investigated for in vitro anti-cancer activity. The OB active liposomes inhibited tumor cell migration and colonization as determined by the scratch assay and clonogenic assay, respectively. Furthermore, the 3D spheroid studies showed that the liposomes were successful in inhibiting tumor growth. These results highlight the potential of OB liposomes to suppress lung cancer. Owing to these attributes, the inhalable OB liposomes can potentially promote better therapeutic outcomes with limited systemic toxicity. Graphical abstract
doi_str_mv 10.1007/s13346-021-01088-0
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s13346_021_01088_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s13346_021_01088_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-756847b9a0b0b310f698c245e62cdaa082e3d30b132c89333973dfb4b7a38ecc3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgqf0DnvIHVifJdjfrTYpfUNCDgreQzc6WlGxSkt2CP8D_bdqKR-cw82Dee8w8Qq4Z3DCA-jYxIcqqAM4KYCBlAWdkxlkDhWhKef6HxeclWaS0hVxlxeqmnpHvt8kNwev4RTt0do8ZhJ6GZAeMo_W2pc7uQgoDJtqHSH3wRRq0c9Rgbm7yG2q0NxjpGFGPA_rx7sAcJqdHG3z23aMLu8OCat9R6-nejjFQ3Gs3HTlX5KLXLuHid87Jx-PD--q5WL8-vazu14URvByLelnJsm4bDS20gkFfNdLwcokVN53WIDmKTkDLBDeyEUI0tej6tmxrLSQaI-aEn3xNDClF7NUu2iE_rxioQ5bqlKXKWapjlgqySJxEKZP9BqPahin6fOd_qh-MaHrY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: formulation development and in vitro evaluation</title><source>Springer Nature</source><creator>Sawant, Shruti S. ; Patil, Suyash M. ; Shukla, Snehal K. ; Kulkarni, Nishant S. ; Gupta, Vivek ; Kunda, Nitesh K.</creator><creatorcontrib>Sawant, Shruti S. ; Patil, Suyash M. ; Shukla, Snehal K. ; Kulkarni, Nishant S. ; Gupta, Vivek ; Kunda, Nitesh K.</creatorcontrib><description>Osimertinib (OB) is a third-generation irreversible tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR), overexpressed in non-small cell lung cancer. Systemic administration of drug often results in poor drug levels at the primary tumor in the lungs and is associated with systemic side effects. In this study, we developed inhalable OB liposomes that can locally accumulate at the tumor site thereby limiting systemic toxicity. OB was loaded into liposomes via active and passive loading methods. The OB active liposomes achieved a higher encapsulation (78%) compared to passive liposomes (25%). The liposomes (passive and active) exhibited excellent aerosolization performance with an aerodynamic diameter of 4 µm and fine particle fraction of 82%. In H1975 cells, OB active and passive liposomes reduced IC 50 by 2.2 and 1.2-fold, respectively, compared to free drug. As the OB active liposomes demonstrated higher cytotoxicity compared to OB passive liposomes, they were further investigated for in vitro anti-cancer activity. The OB active liposomes inhibited tumor cell migration and colonization as determined by the scratch assay and clonogenic assay, respectively. Furthermore, the 3D spheroid studies showed that the liposomes were successful in inhibiting tumor growth. These results highlight the potential of OB liposomes to suppress lung cancer. Owing to these attributes, the inhalable OB liposomes can potentially promote better therapeutic outcomes with limited systemic toxicity. Graphical abstract</description><identifier>ISSN: 2190-393X</identifier><identifier>EISSN: 2190-3948</identifier><identifier>DOI: 10.1007/s13346-021-01088-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomedical and Life Sciences ; Biomedicine ; Original Article ; Pharmaceutical Sciences/Technology</subject><ispartof>Drug delivery and translational research, 2022-10, Vol.12 (10), p.2474-2487</ispartof><rights>Controlled Release Society 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-756847b9a0b0b310f698c245e62cdaa082e3d30b132c89333973dfb4b7a38ecc3</citedby><cites>FETCH-LOGICAL-c324t-756847b9a0b0b310f698c245e62cdaa082e3d30b132c89333973dfb4b7a38ecc3</cites><orcidid>0000-0002-3063-0375</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sawant, Shruti S.</creatorcontrib><creatorcontrib>Patil, Suyash M.</creatorcontrib><creatorcontrib>Shukla, Snehal K.</creatorcontrib><creatorcontrib>Kulkarni, Nishant S.</creatorcontrib><creatorcontrib>Gupta, Vivek</creatorcontrib><creatorcontrib>Kunda, Nitesh K.</creatorcontrib><title>Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: formulation development and in vitro evaluation</title><title>Drug delivery and translational research</title><addtitle>Drug Deliv. and Transl. Res</addtitle><description>Osimertinib (OB) is a third-generation irreversible tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR), overexpressed in non-small cell lung cancer. Systemic administration of drug often results in poor drug levels at the primary tumor in the lungs and is associated with systemic side effects. In this study, we developed inhalable OB liposomes that can locally accumulate at the tumor site thereby limiting systemic toxicity. OB was loaded into liposomes via active and passive loading methods. The OB active liposomes achieved a higher encapsulation (78%) compared to passive liposomes (25%). The liposomes (passive and active) exhibited excellent aerosolization performance with an aerodynamic diameter of 4 µm and fine particle fraction of 82%. In H1975 cells, OB active and passive liposomes reduced IC 50 by 2.2 and 1.2-fold, respectively, compared to free drug. As the OB active liposomes demonstrated higher cytotoxicity compared to OB passive liposomes, they were further investigated for in vitro anti-cancer activity. The OB active liposomes inhibited tumor cell migration and colonization as determined by the scratch assay and clonogenic assay, respectively. Furthermore, the 3D spheroid studies showed that the liposomes were successful in inhibiting tumor growth. These results highlight the potential of OB liposomes to suppress lung cancer. Owing to these attributes, the inhalable OB liposomes can potentially promote better therapeutic outcomes with limited systemic toxicity. Graphical abstract</description><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Original Article</subject><subject>Pharmaceutical Sciences/Technology</subject><issn>2190-393X</issn><issn>2190-3948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgqf0DnvIHVifJdjfrTYpfUNCDgreQzc6WlGxSkt2CP8D_bdqKR-cw82Dee8w8Qq4Z3DCA-jYxIcqqAM4KYCBlAWdkxlkDhWhKef6HxeclWaS0hVxlxeqmnpHvt8kNwev4RTt0do8ZhJ6GZAeMo_W2pc7uQgoDJtqHSH3wRRq0c9Rgbm7yG2q0NxjpGFGPA_rx7sAcJqdHG3z23aMLu8OCat9R6-nejjFQ3Gs3HTlX5KLXLuHid87Jx-PD--q5WL8-vazu14URvByLelnJsm4bDS20gkFfNdLwcokVN53WIDmKTkDLBDeyEUI0tej6tmxrLSQaI-aEn3xNDClF7NUu2iE_rxioQ5bqlKXKWapjlgqySJxEKZP9BqPahin6fOd_qh-MaHrY</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Sawant, Shruti S.</creator><creator>Patil, Suyash M.</creator><creator>Shukla, Snehal K.</creator><creator>Kulkarni, Nishant S.</creator><creator>Gupta, Vivek</creator><creator>Kunda, Nitesh K.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3063-0375</orcidid></search><sort><creationdate>20221001</creationdate><title>Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: formulation development and in vitro evaluation</title><author>Sawant, Shruti S. ; Patil, Suyash M. ; Shukla, Snehal K. ; Kulkarni, Nishant S. ; Gupta, Vivek ; Kunda, Nitesh K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-756847b9a0b0b310f698c245e62cdaa082e3d30b132c89333973dfb4b7a38ecc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Original Article</topic><topic>Pharmaceutical Sciences/Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sawant, Shruti S.</creatorcontrib><creatorcontrib>Patil, Suyash M.</creatorcontrib><creatorcontrib>Shukla, Snehal K.</creatorcontrib><creatorcontrib>Kulkarni, Nishant S.</creatorcontrib><creatorcontrib>Gupta, Vivek</creatorcontrib><creatorcontrib>Kunda, Nitesh K.</creatorcontrib><collection>CrossRef</collection><jtitle>Drug delivery and translational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sawant, Shruti S.</au><au>Patil, Suyash M.</au><au>Shukla, Snehal K.</au><au>Kulkarni, Nishant S.</au><au>Gupta, Vivek</au><au>Kunda, Nitesh K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: formulation development and in vitro evaluation</atitle><jtitle>Drug delivery and translational research</jtitle><stitle>Drug Deliv. and Transl. Res</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>10</issue><spage>2474</spage><epage>2487</epage><pages>2474-2487</pages><issn>2190-393X</issn><eissn>2190-3948</eissn><abstract>Osimertinib (OB) is a third-generation irreversible tyrosine kinase inhibitor targeting the epidermal growth factor receptor (EGFR), overexpressed in non-small cell lung cancer. Systemic administration of drug often results in poor drug levels at the primary tumor in the lungs and is associated with systemic side effects. In this study, we developed inhalable OB liposomes that can locally accumulate at the tumor site thereby limiting systemic toxicity. OB was loaded into liposomes via active and passive loading methods. The OB active liposomes achieved a higher encapsulation (78%) compared to passive liposomes (25%). The liposomes (passive and active) exhibited excellent aerosolization performance with an aerodynamic diameter of 4 µm and fine particle fraction of 82%. In H1975 cells, OB active and passive liposomes reduced IC 50 by 2.2 and 1.2-fold, respectively, compared to free drug. As the OB active liposomes demonstrated higher cytotoxicity compared to OB passive liposomes, they were further investigated for in vitro anti-cancer activity. The OB active liposomes inhibited tumor cell migration and colonization as determined by the scratch assay and clonogenic assay, respectively. Furthermore, the 3D spheroid studies showed that the liposomes were successful in inhibiting tumor growth. These results highlight the potential of OB liposomes to suppress lung cancer. Owing to these attributes, the inhalable OB liposomes can potentially promote better therapeutic outcomes with limited systemic toxicity. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s13346-021-01088-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3063-0375</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-393X
ispartof Drug delivery and translational research, 2022-10, Vol.12 (10), p.2474-2487
issn 2190-393X
2190-3948
language eng
recordid cdi_crossref_primary_10_1007_s13346_021_01088_0
source Springer Nature
subjects Biomedical and Life Sciences
Biomedicine
Original Article
Pharmaceutical Sciences/Technology
title Pulmonary delivery of osimertinib liposomes for non-small cell lung cancer treatment: formulation development and in vitro evaluation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A03%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pulmonary%20delivery%20of%20osimertinib%20liposomes%20for%20non-small%20cell%20lung%20cancer%20treatment:%20formulation%20development%20and%20in%20vitro%20evaluation&rft.jtitle=Drug%20delivery%20and%20translational%20research&rft.au=Sawant,%20Shruti%20S.&rft.date=2022-10-01&rft.volume=12&rft.issue=10&rft.spage=2474&rft.epage=2487&rft.pages=2474-2487&rft.issn=2190-393X&rft.eissn=2190-3948&rft_id=info:doi/10.1007/s13346-021-01088-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s13346_021_01088_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-756847b9a0b0b310f698c245e62cdaa082e3d30b132c89333973dfb4b7a38ecc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true