Loading…

An empirical predictive model for the flight period of Platypus koryoensis (Coleoptera: Platypodinae)

Between 2007 and 2009, field studies were conducted in four Quercus mongolica Fischer ex Ledebour forests in Korea to develop an empirical degree-day model for the flight period of the ambrosia beetle, Platypus koryoensis (Murayama). The lower developmental threshold temperature was estimated using...

Full description

Saved in:
Bibliographic Details
Published in:Applied entomology and zoology 2013-11, Vol.48 (4), p.515-524
Main Authors: Nam, Youngwoo, Koh, Sang-Hyun, Won, Dae-Sung, Kim, Jong-Kuk, Choi, Won Il
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Between 2007 and 2009, field studies were conducted in four Quercus mongolica Fischer ex Ledebour forests in Korea to develop an empirical degree-day model for the flight period of the ambrosia beetle, Platypus koryoensis (Murayama). The lower developmental threshold temperature was estimated using an iterative method based on field trap catches and temperatures. The pooled proportion of the total number of beetles found in the traps at the end of the experiment was plotted against the accumulated degree-days at selected baseline temperatures, and these plots were fitted by the Weibull function. The baseline temperature with the highest coefficient of determination was considered the lower developmental threshold temperature, and this was estimated to be 5.8 °C. The explanatory power of the model was 89 %. Moreover, the model accurately predicted the time distributions of P. koryoensis flights in 2011 and 2012 at one of the sites. The estimated median flight dates in 2011 and 2012 were 4 days earlier and 5 days later than the corresponding observed flight dates, respectively. The estimated median date of flight advanced progressively during 1970–2010 by a total of 9 days due to an increase in annual mean temperature.
ISSN:0003-6862
1347-605X
DOI:10.1007/s13355-013-0213-3