Loading…

Henneberg moves on mechanisms

A bar-and-joint framework in the plane with degree of freedom 1 is called a mechanism. It is well-known that the operations of 0-extension and 1-extension, the so called Henneberg moves, can always be performed on a framework so that its degree of freedom is preserved. It was conjectured by the firs...

Full description

Saved in:
Bibliographic Details
Published in:Beiträge zur Algebra und Geometrie 2015-10, Vol.56 (2), p.587-591
Main Authors: Jackson, Bill, Jordán, Tibor, Servatius, Brigitte, Servatius, Herman
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c331t-af0df3efd8ca88f7161108680dd8312e38c0b11ea090f619786953e9efeeee0f3
cites cdi_FETCH-LOGICAL-c331t-af0df3efd8ca88f7161108680dd8312e38c0b11ea090f619786953e9efeeee0f3
container_end_page 591
container_issue 2
container_start_page 587
container_title Beiträge zur Algebra und Geometrie
container_volume 56
creator Jackson, Bill
Jordán, Tibor
Servatius, Brigitte
Servatius, Herman
description A bar-and-joint framework in the plane with degree of freedom 1 is called a mechanism. It is well-known that the operations of 0-extension and 1-extension, the so called Henneberg moves, can always be performed on a framework so that its degree of freedom is preserved. It was conjectured by the first and second author in 2012 that for a mechanism in generic position these operations can be performed without restricting its motion. In this note we provide a counterexample.
doi_str_mv 10.1007/s13366-014-0217-3
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s13366_014_0217_3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s13366_014_0217_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-af0df3efd8ca88f7161108680dd8312e38c0b11ea090f619786953e9efeeee0f3</originalsourceid><addsrcrecordid>eNp9j8FKAzEQhoNYcG19AA_CvkB0Zqcmk6MUtULBi55DujupLW5WEhV8e7esZ-fyX-b7-T-lLhGuEcDeFCQyRgMuNTRoNZ2oqkGHGojpVFWAxHrJDZ6p81IOAGCstZW6WktKspW8q_vhW0o9pLqX9i2kfenLQs1ieC9y8Zdz9fpw_7Ja683z49PqbqNbIvzUIUIXSWLHbWCOFg0isGHoOiZshLiFLaIEcBANOsvG3ZI4iTIeRJornHrbPJSSJfqPvO9D_vEI_ujnJz8_-vmjn6eRaSamjL9pJ9kfhq-cxpn_QL_yglHn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Henneberg moves on mechanisms</title><source>Springer Nature</source><creator>Jackson, Bill ; Jordán, Tibor ; Servatius, Brigitte ; Servatius, Herman</creator><creatorcontrib>Jackson, Bill ; Jordán, Tibor ; Servatius, Brigitte ; Servatius, Herman</creatorcontrib><description>A bar-and-joint framework in the plane with degree of freedom 1 is called a mechanism. It is well-known that the operations of 0-extension and 1-extension, the so called Henneberg moves, can always be performed on a framework so that its degree of freedom is preserved. It was conjectured by the first and second author in 2012 that for a mechanism in generic position these operations can be performed without restricting its motion. In this note we provide a counterexample.</description><identifier>ISSN: 0138-4821</identifier><identifier>EISSN: 2191-0383</identifier><identifier>DOI: 10.1007/s13366-014-0217-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Algebraic Geometry ; Convex and Discrete Geometry ; Geometry ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Beiträge zur Algebra und Geometrie, 2015-10, Vol.56 (2), p.587-591</ispartof><rights>The Managing Editors 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-af0df3efd8ca88f7161108680dd8312e38c0b11ea090f619786953e9efeeee0f3</citedby><cites>FETCH-LOGICAL-c331t-af0df3efd8ca88f7161108680dd8312e38c0b11ea090f619786953e9efeeee0f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jackson, Bill</creatorcontrib><creatorcontrib>Jordán, Tibor</creatorcontrib><creatorcontrib>Servatius, Brigitte</creatorcontrib><creatorcontrib>Servatius, Herman</creatorcontrib><title>Henneberg moves on mechanisms</title><title>Beiträge zur Algebra und Geometrie</title><addtitle>Beitr Algebra Geom</addtitle><description>A bar-and-joint framework in the plane with degree of freedom 1 is called a mechanism. It is well-known that the operations of 0-extension and 1-extension, the so called Henneberg moves, can always be performed on a framework so that its degree of freedom is preserved. It was conjectured by the first and second author in 2012 that for a mechanism in generic position these operations can be performed without restricting its motion. In this note we provide a counterexample.</description><subject>Algebra</subject><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0138-4821</issn><issn>2191-0383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9j8FKAzEQhoNYcG19AA_CvkB0Zqcmk6MUtULBi55DujupLW5WEhV8e7esZ-fyX-b7-T-lLhGuEcDeFCQyRgMuNTRoNZ2oqkGHGojpVFWAxHrJDZ6p81IOAGCstZW6WktKspW8q_vhW0o9pLqX9i2kfenLQs1ieC9y8Zdz9fpw_7Ja683z49PqbqNbIvzUIUIXSWLHbWCOFg0isGHoOiZshLiFLaIEcBANOsvG3ZI4iTIeRJornHrbPJSSJfqPvO9D_vEI_ujnJz8_-vmjn6eRaSamjL9pJ9kfhq-cxpn_QL_yglHn</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Jackson, Bill</creator><creator>Jordán, Tibor</creator><creator>Servatius, Brigitte</creator><creator>Servatius, Herman</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20151001</creationdate><title>Henneberg moves on mechanisms</title><author>Jackson, Bill ; Jordán, Tibor ; Servatius, Brigitte ; Servatius, Herman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-af0df3efd8ca88f7161108680dd8312e38c0b11ea090f619786953e9efeeee0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jackson, Bill</creatorcontrib><creatorcontrib>Jordán, Tibor</creatorcontrib><creatorcontrib>Servatius, Brigitte</creatorcontrib><creatorcontrib>Servatius, Herman</creatorcontrib><collection>CrossRef</collection><jtitle>Beiträge zur Algebra und Geometrie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jackson, Bill</au><au>Jordán, Tibor</au><au>Servatius, Brigitte</au><au>Servatius, Herman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Henneberg moves on mechanisms</atitle><jtitle>Beiträge zur Algebra und Geometrie</jtitle><stitle>Beitr Algebra Geom</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>56</volume><issue>2</issue><spage>587</spage><epage>591</epage><pages>587-591</pages><issn>0138-4821</issn><eissn>2191-0383</eissn><abstract>A bar-and-joint framework in the plane with degree of freedom 1 is called a mechanism. It is well-known that the operations of 0-extension and 1-extension, the so called Henneberg moves, can always be performed on a framework so that its degree of freedom is preserved. It was conjectured by the first and second author in 2012 that for a mechanism in generic position these operations can be performed without restricting its motion. In this note we provide a counterexample.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13366-014-0217-3</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0138-4821
ispartof Beiträge zur Algebra und Geometrie, 2015-10, Vol.56 (2), p.587-591
issn 0138-4821
2191-0383
language eng
recordid cdi_crossref_primary_10_1007_s13366_014_0217_3
source Springer Nature
subjects Algebra
Algebraic Geometry
Convex and Discrete Geometry
Geometry
Mathematics
Mathematics and Statistics
Original Paper
title Henneberg moves on mechanisms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Henneberg%20moves%20on%20mechanisms&rft.jtitle=Beitr%C3%A4ge%20zur%20Algebra%20und%20Geometrie&rft.au=Jackson,%20Bill&rft.date=2015-10-01&rft.volume=56&rft.issue=2&rft.spage=587&rft.epage=591&rft.pages=587-591&rft.issn=0138-4821&rft.eissn=2191-0383&rft_id=info:doi/10.1007/s13366-014-0217-3&rft_dat=%3Ccrossref_sprin%3E10_1007_s13366_014_0217_3%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-af0df3efd8ca88f7161108680dd8312e38c0b11ea090f619786953e9efeeee0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true