Loading…
Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology
Sugarcane bagasse is a byproduct constituting more than 25 % processed matter after cane juice extraction and is thus a low-cost renewable substrate for value-added products such as bioethanol and xylitol due to its high content of hemicellulose and cellulose. In this study, a Box–Behnken response s...
Saved in:
Published in: | Biomass conversion and biorefinery 2014-03, Vol.4 (1), p.15-23 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863 |
container_end_page | 23 |
container_issue | 1 |
container_start_page | 15 |
container_title | Biomass conversion and biorefinery |
container_volume | 4 |
creator | Morando, Luis E. Nochebuena Gómez, Claudia X. Domínguez Zamora, Leticia López Uscanga, Ma. Guadalupe Aguilar |
description | Sugarcane bagasse is a byproduct constituting more than 25 % processed matter after cane juice extraction and is thus a low-cost renewable substrate for value-added products such as bioethanol and xylitol due to its high content of hemicellulose and cellulose. In this study, a Box–Behnken response surface method design was used to optimize alkaline hydrogen peroxide pretreatment of dilute acid-treated sugarcane bagasse. Hydrogen peroxide concentration (2–6 %
w
/
v
), pretreatment time (10–40 h) and liquid/solid ratio (8–20
v
/
w
) were tested in order to maximize glucose production in the enzymatic hydrolysis process. The optimum conditions obtained were 4.7 %
w
/
v
hydrogen peroxide concentration, 26.7-h pretreatment time, and 17.1
v
/
w
liquid/solid ratio, producing 31.1 g/L glucose (40.2 % glucose yield) at 72-h hydrolysis. After optimizing alkaline hydrogen peroxide pretreatment, a second Box–Behnken design was used to evaluate the effects of cellulase loading (3.4–5.6 filter paper unit (FPU)/g solid), β-glucosidase loading (15–27 beta-glucosidase unit (CBU)/g solid) and Tween 80 concentration (0.11–1.7 %
w
/
v
) on glucose production during enzymatic hydrolysis. By analyzing response surface plots and time course hydrolysis, 50.1 g/L glucose (64.8 % glucose yield) was obtained at 120-h hydrolysis using 4.1 FPU/g solids for cellulase, 18.2 CBU/g solids for β-glucosidase and 0.95 %
w
/
v
for Tween 80. This yield corresponds to a 29 % improvement in glucose concentration compared to no Tween 80 addition. |
doi_str_mv | 10.1007/s13399-013-0091-5 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s13399_013_0091_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s13399_013_0091_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEhX0A9j5BwLjuHktUcVLqsSCso4mziRxSezIdlXaL-IzcSliycoj654zoxtFNxxuOUB-57gQZRkDFzFAyeP0LJolvIQ4KxJx_jfz9DKaO7cBgETkohAwi77ePHrlvJI4MDN5NapD-DCamZbh8IGD0sT6fWNNR5pNZM2naohNlrwl9CNpf4y6bYdWYsjW2KFzxFpjGenDfgw6yRxK2aNVbVj0o98p37P1joK0ALZ1SnfMkpuMDqzb2hYlsZF8bxozmG5_HV20ODia_75X0fvjw3r5HK9en16W96tYirTwcVMXJTVJiZTlooHFIsmoWWRFykvkHOs6AyyxTiEvMM84AqJImhbqtJV5XWTiKuInr7TGOUttNVk1ot1XHKpj29Wp7Sq0XR3brtLAJCfGhazuyFYbs7U6nPkP9A1hvYhF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology</title><source>Springer Link</source><creator>Morando, Luis E. Nochebuena ; Gómez, Claudia X. Domínguez ; Zamora, Leticia López ; Uscanga, Ma. Guadalupe Aguilar</creator><creatorcontrib>Morando, Luis E. Nochebuena ; Gómez, Claudia X. Domínguez ; Zamora, Leticia López ; Uscanga, Ma. Guadalupe Aguilar</creatorcontrib><description>Sugarcane bagasse is a byproduct constituting more than 25 % processed matter after cane juice extraction and is thus a low-cost renewable substrate for value-added products such as bioethanol and xylitol due to its high content of hemicellulose and cellulose. In this study, a Box–Behnken response surface method design was used to optimize alkaline hydrogen peroxide pretreatment of dilute acid-treated sugarcane bagasse. Hydrogen peroxide concentration (2–6 %
w
/
v
), pretreatment time (10–40 h) and liquid/solid ratio (8–20
v
/
w
) were tested in order to maximize glucose production in the enzymatic hydrolysis process. The optimum conditions obtained were 4.7 %
w
/
v
hydrogen peroxide concentration, 26.7-h pretreatment time, and 17.1
v
/
w
liquid/solid ratio, producing 31.1 g/L glucose (40.2 % glucose yield) at 72-h hydrolysis. After optimizing alkaline hydrogen peroxide pretreatment, a second Box–Behnken design was used to evaluate the effects of cellulase loading (3.4–5.6 filter paper unit (FPU)/g solid), β-glucosidase loading (15–27 beta-glucosidase unit (CBU)/g solid) and Tween 80 concentration (0.11–1.7 %
w
/
v
) on glucose production during enzymatic hydrolysis. By analyzing response surface plots and time course hydrolysis, 50.1 g/L glucose (64.8 % glucose yield) was obtained at 120-h hydrolysis using 4.1 FPU/g solids for cellulase, 18.2 CBU/g solids for β-glucosidase and 0.95 %
w
/
v
for Tween 80. This yield corresponds to a 29 % improvement in glucose concentration compared to no Tween 80 addition.</description><identifier>ISSN: 2190-6815</identifier><identifier>EISSN: 2190-6823</identifier><identifier>DOI: 10.1007/s13399-013-0091-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biotechnology ; Energy ; Original Article ; Renewable and Green Energy</subject><ispartof>Biomass conversion and biorefinery, 2014-03, Vol.4 (1), p.15-23</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863</citedby><cites>FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Morando, Luis E. Nochebuena</creatorcontrib><creatorcontrib>Gómez, Claudia X. Domínguez</creatorcontrib><creatorcontrib>Zamora, Leticia López</creatorcontrib><creatorcontrib>Uscanga, Ma. Guadalupe Aguilar</creatorcontrib><title>Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology</title><title>Biomass conversion and biorefinery</title><addtitle>Biomass Conv. Bioref</addtitle><description>Sugarcane bagasse is a byproduct constituting more than 25 % processed matter after cane juice extraction and is thus a low-cost renewable substrate for value-added products such as bioethanol and xylitol due to its high content of hemicellulose and cellulose. In this study, a Box–Behnken response surface method design was used to optimize alkaline hydrogen peroxide pretreatment of dilute acid-treated sugarcane bagasse. Hydrogen peroxide concentration (2–6 %
w
/
v
), pretreatment time (10–40 h) and liquid/solid ratio (8–20
v
/
w
) were tested in order to maximize glucose production in the enzymatic hydrolysis process. The optimum conditions obtained were 4.7 %
w
/
v
hydrogen peroxide concentration, 26.7-h pretreatment time, and 17.1
v
/
w
liquid/solid ratio, producing 31.1 g/L glucose (40.2 % glucose yield) at 72-h hydrolysis. After optimizing alkaline hydrogen peroxide pretreatment, a second Box–Behnken design was used to evaluate the effects of cellulase loading (3.4–5.6 filter paper unit (FPU)/g solid), β-glucosidase loading (15–27 beta-glucosidase unit (CBU)/g solid) and Tween 80 concentration (0.11–1.7 %
w
/
v
) on glucose production during enzymatic hydrolysis. By analyzing response surface plots and time course hydrolysis, 50.1 g/L glucose (64.8 % glucose yield) was obtained at 120-h hydrolysis using 4.1 FPU/g solids for cellulase, 18.2 CBU/g solids for β-glucosidase and 0.95 %
w
/
v
for Tween 80. This yield corresponds to a 29 % improvement in glucose concentration compared to no Tween 80 addition.</description><subject>Biotechnology</subject><subject>Energy</subject><subject>Original Article</subject><subject>Renewable and Green Energy</subject><issn>2190-6815</issn><issn>2190-6823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEhX0A9j5BwLjuHktUcVLqsSCso4mziRxSezIdlXaL-IzcSliycoj654zoxtFNxxuOUB-57gQZRkDFzFAyeP0LJolvIQ4KxJx_jfz9DKaO7cBgETkohAwi77ePHrlvJI4MDN5NapD-DCamZbh8IGD0sT6fWNNR5pNZM2naohNlrwl9CNpf4y6bYdWYsjW2KFzxFpjGenDfgw6yRxK2aNVbVj0o98p37P1joK0ALZ1SnfMkpuMDqzb2hYlsZF8bxozmG5_HV20ODia_75X0fvjw3r5HK9en16W96tYirTwcVMXJTVJiZTlooHFIsmoWWRFykvkHOs6AyyxTiEvMM84AqJImhbqtJV5XWTiKuInr7TGOUttNVk1ot1XHKpj29Wp7Sq0XR3brtLAJCfGhazuyFYbs7U6nPkP9A1hvYhF</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Morando, Luis E. Nochebuena</creator><creator>Gómez, Claudia X. Domínguez</creator><creator>Zamora, Leticia López</creator><creator>Uscanga, Ma. Guadalupe Aguilar</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140301</creationdate><title>Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology</title><author>Morando, Luis E. Nochebuena ; Gómez, Claudia X. Domínguez ; Zamora, Leticia López ; Uscanga, Ma. Guadalupe Aguilar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biotechnology</topic><topic>Energy</topic><topic>Original Article</topic><topic>Renewable and Green Energy</topic><toplevel>online_resources</toplevel><creatorcontrib>Morando, Luis E. Nochebuena</creatorcontrib><creatorcontrib>Gómez, Claudia X. Domínguez</creatorcontrib><creatorcontrib>Zamora, Leticia López</creatorcontrib><creatorcontrib>Uscanga, Ma. Guadalupe Aguilar</creatorcontrib><collection>CrossRef</collection><jtitle>Biomass conversion and biorefinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morando, Luis E. Nochebuena</au><au>Gómez, Claudia X. Domínguez</au><au>Zamora, Leticia López</au><au>Uscanga, Ma. Guadalupe Aguilar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology</atitle><jtitle>Biomass conversion and biorefinery</jtitle><stitle>Biomass Conv. Bioref</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>15</spage><epage>23</epage><pages>15-23</pages><issn>2190-6815</issn><eissn>2190-6823</eissn><abstract>Sugarcane bagasse is a byproduct constituting more than 25 % processed matter after cane juice extraction and is thus a low-cost renewable substrate for value-added products such as bioethanol and xylitol due to its high content of hemicellulose and cellulose. In this study, a Box–Behnken response surface method design was used to optimize alkaline hydrogen peroxide pretreatment of dilute acid-treated sugarcane bagasse. Hydrogen peroxide concentration (2–6 %
w
/
v
), pretreatment time (10–40 h) and liquid/solid ratio (8–20
v
/
w
) were tested in order to maximize glucose production in the enzymatic hydrolysis process. The optimum conditions obtained were 4.7 %
w
/
v
hydrogen peroxide concentration, 26.7-h pretreatment time, and 17.1
v
/
w
liquid/solid ratio, producing 31.1 g/L glucose (40.2 % glucose yield) at 72-h hydrolysis. After optimizing alkaline hydrogen peroxide pretreatment, a second Box–Behnken design was used to evaluate the effects of cellulase loading (3.4–5.6 filter paper unit (FPU)/g solid), β-glucosidase loading (15–27 beta-glucosidase unit (CBU)/g solid) and Tween 80 concentration (0.11–1.7 %
w
/
v
) on glucose production during enzymatic hydrolysis. By analyzing response surface plots and time course hydrolysis, 50.1 g/L glucose (64.8 % glucose yield) was obtained at 120-h hydrolysis using 4.1 FPU/g solids for cellulase, 18.2 CBU/g solids for β-glucosidase and 0.95 %
w
/
v
for Tween 80. This yield corresponds to a 29 % improvement in glucose concentration compared to no Tween 80 addition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13399-013-0091-5</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-6815 |
ispartof | Biomass conversion and biorefinery, 2014-03, Vol.4 (1), p.15-23 |
issn | 2190-6815 2190-6823 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s13399_013_0091_5 |
source | Springer Link |
subjects | Biotechnology Energy Original Article Renewable and Green Energy |
title | Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20optimization%20of%20alkaline%20hydrogen%20peroxide%20pretreatment%20of%20sugarcane%20bagasse%20for%20enzymatic%20saccharification%20with%20Tween%2080%20using%20response%20surface%20methodology&rft.jtitle=Biomass%20conversion%20and%20biorefinery&rft.au=Morando,%20Luis%20E.%20Nochebuena&rft.date=2014-03-01&rft.volume=4&rft.issue=1&rft.spage=15&rft.epage=23&rft.pages=15-23&rft.issn=2190-6815&rft.eissn=2190-6823&rft_id=info:doi/10.1007/s13399-013-0091-5&rft_dat=%3Ccrossref_sprin%3E10_1007_s13399_013_0091_5%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |