Loading…

Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology

Sugarcane bagasse is a byproduct constituting more than 25 % processed matter after cane juice extraction and is thus a low-cost renewable substrate for value-added products such as bioethanol and xylitol due to its high content of hemicellulose and cellulose. In this study, a Box–Behnken response s...

Full description

Saved in:
Bibliographic Details
Published in:Biomass conversion and biorefinery 2014-03, Vol.4 (1), p.15-23
Main Authors: Morando, Luis E. Nochebuena, Gómez, Claudia X. Domínguez, Zamora, Leticia López, Uscanga, Ma. Guadalupe Aguilar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863
cites cdi_FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863
container_end_page 23
container_issue 1
container_start_page 15
container_title Biomass conversion and biorefinery
container_volume 4
creator Morando, Luis E. Nochebuena
Gómez, Claudia X. Domínguez
Zamora, Leticia López
Uscanga, Ma. Guadalupe Aguilar
description Sugarcane bagasse is a byproduct constituting more than 25 % processed matter after cane juice extraction and is thus a low-cost renewable substrate for value-added products such as bioethanol and xylitol due to its high content of hemicellulose and cellulose. In this study, a Box–Behnken response surface method design was used to optimize alkaline hydrogen peroxide pretreatment of dilute acid-treated sugarcane bagasse. Hydrogen peroxide concentration (2–6 % w / v ), pretreatment time (10–40 h) and liquid/solid ratio (8–20 v / w ) were tested in order to maximize glucose production in the enzymatic hydrolysis process. The optimum conditions obtained were 4.7 % w / v hydrogen peroxide concentration, 26.7-h pretreatment time, and 17.1 v / w liquid/solid ratio, producing 31.1 g/L glucose (40.2 % glucose yield) at 72-h hydrolysis. After optimizing alkaline hydrogen peroxide pretreatment, a second Box–Behnken design was used to evaluate the effects of cellulase loading (3.4–5.6 filter paper unit (FPU)/g solid), β-glucosidase loading (15–27 beta-glucosidase unit (CBU)/g solid) and Tween 80 concentration (0.11–1.7 % w / v ) on glucose production during enzymatic hydrolysis. By analyzing response surface plots and time course hydrolysis, 50.1 g/L glucose (64.8 % glucose yield) was obtained at 120-h hydrolysis using 4.1 FPU/g solids for cellulase, 18.2 CBU/g solids for β-glucosidase and 0.95 % w / v for Tween 80. This yield corresponds to a 29 % improvement in glucose concentration compared to no Tween 80 addition.
doi_str_mv 10.1007/s13399-013-0091-5
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s13399_013_0091_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s13399_013_0091_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEhX0A9j5BwLjuHktUcVLqsSCso4mziRxSezIdlXaL-IzcSliycoj654zoxtFNxxuOUB-57gQZRkDFzFAyeP0LJolvIQ4KxJx_jfz9DKaO7cBgETkohAwi77ePHrlvJI4MDN5NapD-DCamZbh8IGD0sT6fWNNR5pNZM2naohNlrwl9CNpf4y6bYdWYsjW2KFzxFpjGenDfgw6yRxK2aNVbVj0o98p37P1joK0ALZ1SnfMkpuMDqzb2hYlsZF8bxozmG5_HV20ODia_75X0fvjw3r5HK9en16W96tYirTwcVMXJTVJiZTlooHFIsmoWWRFykvkHOs6AyyxTiEvMM84AqJImhbqtJV5XWTiKuInr7TGOUttNVk1ot1XHKpj29Wp7Sq0XR3brtLAJCfGhazuyFYbs7U6nPkP9A1hvYhF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology</title><source>Springer Link</source><creator>Morando, Luis E. Nochebuena ; Gómez, Claudia X. Domínguez ; Zamora, Leticia López ; Uscanga, Ma. Guadalupe Aguilar</creator><creatorcontrib>Morando, Luis E. Nochebuena ; Gómez, Claudia X. Domínguez ; Zamora, Leticia López ; Uscanga, Ma. Guadalupe Aguilar</creatorcontrib><description>Sugarcane bagasse is a byproduct constituting more than 25 % processed matter after cane juice extraction and is thus a low-cost renewable substrate for value-added products such as bioethanol and xylitol due to its high content of hemicellulose and cellulose. In this study, a Box–Behnken response surface method design was used to optimize alkaline hydrogen peroxide pretreatment of dilute acid-treated sugarcane bagasse. Hydrogen peroxide concentration (2–6 % w / v ), pretreatment time (10–40 h) and liquid/solid ratio (8–20 v / w ) were tested in order to maximize glucose production in the enzymatic hydrolysis process. The optimum conditions obtained were 4.7 % w / v hydrogen peroxide concentration, 26.7-h pretreatment time, and 17.1 v / w liquid/solid ratio, producing 31.1 g/L glucose (40.2 % glucose yield) at 72-h hydrolysis. After optimizing alkaline hydrogen peroxide pretreatment, a second Box–Behnken design was used to evaluate the effects of cellulase loading (3.4–5.6 filter paper unit (FPU)/g solid), β-glucosidase loading (15–27 beta-glucosidase unit (CBU)/g solid) and Tween 80 concentration (0.11–1.7 % w / v ) on glucose production during enzymatic hydrolysis. By analyzing response surface plots and time course hydrolysis, 50.1 g/L glucose (64.8 % glucose yield) was obtained at 120-h hydrolysis using 4.1 FPU/g solids for cellulase, 18.2 CBU/g solids for β-glucosidase and 0.95 % w / v for Tween 80. This yield corresponds to a 29 % improvement in glucose concentration compared to no Tween 80 addition.</description><identifier>ISSN: 2190-6815</identifier><identifier>EISSN: 2190-6823</identifier><identifier>DOI: 10.1007/s13399-013-0091-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biotechnology ; Energy ; Original Article ; Renewable and Green Energy</subject><ispartof>Biomass conversion and biorefinery, 2014-03, Vol.4 (1), p.15-23</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863</citedby><cites>FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Morando, Luis E. Nochebuena</creatorcontrib><creatorcontrib>Gómez, Claudia X. Domínguez</creatorcontrib><creatorcontrib>Zamora, Leticia López</creatorcontrib><creatorcontrib>Uscanga, Ma. Guadalupe Aguilar</creatorcontrib><title>Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology</title><title>Biomass conversion and biorefinery</title><addtitle>Biomass Conv. Bioref</addtitle><description>Sugarcane bagasse is a byproduct constituting more than 25 % processed matter after cane juice extraction and is thus a low-cost renewable substrate for value-added products such as bioethanol and xylitol due to its high content of hemicellulose and cellulose. In this study, a Box–Behnken response surface method design was used to optimize alkaline hydrogen peroxide pretreatment of dilute acid-treated sugarcane bagasse. Hydrogen peroxide concentration (2–6 % w / v ), pretreatment time (10–40 h) and liquid/solid ratio (8–20 v / w ) were tested in order to maximize glucose production in the enzymatic hydrolysis process. The optimum conditions obtained were 4.7 % w / v hydrogen peroxide concentration, 26.7-h pretreatment time, and 17.1 v / w liquid/solid ratio, producing 31.1 g/L glucose (40.2 % glucose yield) at 72-h hydrolysis. After optimizing alkaline hydrogen peroxide pretreatment, a second Box–Behnken design was used to evaluate the effects of cellulase loading (3.4–5.6 filter paper unit (FPU)/g solid), β-glucosidase loading (15–27 beta-glucosidase unit (CBU)/g solid) and Tween 80 concentration (0.11–1.7 % w / v ) on glucose production during enzymatic hydrolysis. By analyzing response surface plots and time course hydrolysis, 50.1 g/L glucose (64.8 % glucose yield) was obtained at 120-h hydrolysis using 4.1 FPU/g solids for cellulase, 18.2 CBU/g solids for β-glucosidase and 0.95 % w / v for Tween 80. This yield corresponds to a 29 % improvement in glucose concentration compared to no Tween 80 addition.</description><subject>Biotechnology</subject><subject>Energy</subject><subject>Original Article</subject><subject>Renewable and Green Energy</subject><issn>2190-6815</issn><issn>2190-6823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEhX0A9j5BwLjuHktUcVLqsSCso4mziRxSezIdlXaL-IzcSliycoj654zoxtFNxxuOUB-57gQZRkDFzFAyeP0LJolvIQ4KxJx_jfz9DKaO7cBgETkohAwi77ePHrlvJI4MDN5NapD-DCamZbh8IGD0sT6fWNNR5pNZM2naohNlrwl9CNpf4y6bYdWYsjW2KFzxFpjGenDfgw6yRxK2aNVbVj0o98p37P1joK0ALZ1SnfMkpuMDqzb2hYlsZF8bxozmG5_HV20ODia_75X0fvjw3r5HK9en16W96tYirTwcVMXJTVJiZTlooHFIsmoWWRFykvkHOs6AyyxTiEvMM84AqJImhbqtJV5XWTiKuInr7TGOUttNVk1ot1XHKpj29Wp7Sq0XR3brtLAJCfGhazuyFYbs7U6nPkP9A1hvYhF</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Morando, Luis E. Nochebuena</creator><creator>Gómez, Claudia X. Domínguez</creator><creator>Zamora, Leticia López</creator><creator>Uscanga, Ma. Guadalupe Aguilar</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140301</creationdate><title>Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology</title><author>Morando, Luis E. Nochebuena ; Gómez, Claudia X. Domínguez ; Zamora, Leticia López ; Uscanga, Ma. Guadalupe Aguilar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biotechnology</topic><topic>Energy</topic><topic>Original Article</topic><topic>Renewable and Green Energy</topic><toplevel>online_resources</toplevel><creatorcontrib>Morando, Luis E. Nochebuena</creatorcontrib><creatorcontrib>Gómez, Claudia X. Domínguez</creatorcontrib><creatorcontrib>Zamora, Leticia López</creatorcontrib><creatorcontrib>Uscanga, Ma. Guadalupe Aguilar</creatorcontrib><collection>CrossRef</collection><jtitle>Biomass conversion and biorefinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morando, Luis E. Nochebuena</au><au>Gómez, Claudia X. Domínguez</au><au>Zamora, Leticia López</au><au>Uscanga, Ma. Guadalupe Aguilar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology</atitle><jtitle>Biomass conversion and biorefinery</jtitle><stitle>Biomass Conv. Bioref</stitle><date>2014-03-01</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>15</spage><epage>23</epage><pages>15-23</pages><issn>2190-6815</issn><eissn>2190-6823</eissn><abstract>Sugarcane bagasse is a byproduct constituting more than 25 % processed matter after cane juice extraction and is thus a low-cost renewable substrate for value-added products such as bioethanol and xylitol due to its high content of hemicellulose and cellulose. In this study, a Box–Behnken response surface method design was used to optimize alkaline hydrogen peroxide pretreatment of dilute acid-treated sugarcane bagasse. Hydrogen peroxide concentration (2–6 % w / v ), pretreatment time (10–40 h) and liquid/solid ratio (8–20 v / w ) were tested in order to maximize glucose production in the enzymatic hydrolysis process. The optimum conditions obtained were 4.7 % w / v hydrogen peroxide concentration, 26.7-h pretreatment time, and 17.1 v / w liquid/solid ratio, producing 31.1 g/L glucose (40.2 % glucose yield) at 72-h hydrolysis. After optimizing alkaline hydrogen peroxide pretreatment, a second Box–Behnken design was used to evaluate the effects of cellulase loading (3.4–5.6 filter paper unit (FPU)/g solid), β-glucosidase loading (15–27 beta-glucosidase unit (CBU)/g solid) and Tween 80 concentration (0.11–1.7 % w / v ) on glucose production during enzymatic hydrolysis. By analyzing response surface plots and time course hydrolysis, 50.1 g/L glucose (64.8 % glucose yield) was obtained at 120-h hydrolysis using 4.1 FPU/g solids for cellulase, 18.2 CBU/g solids for β-glucosidase and 0.95 % w / v for Tween 80. This yield corresponds to a 29 % improvement in glucose concentration compared to no Tween 80 addition.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13399-013-0091-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2190-6815
ispartof Biomass conversion and biorefinery, 2014-03, Vol.4 (1), p.15-23
issn 2190-6815
2190-6823
language eng
recordid cdi_crossref_primary_10_1007_s13399_013_0091_5
source Springer Link
subjects Biotechnology
Energy
Original Article
Renewable and Green Energy
title Statistical optimization of alkaline hydrogen peroxide pretreatment of sugarcane bagasse for enzymatic saccharification with Tween 80 using response surface methodology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20optimization%20of%20alkaline%20hydrogen%20peroxide%20pretreatment%20of%20sugarcane%20bagasse%20for%20enzymatic%20saccharification%20with%20Tween%2080%20using%20response%20surface%20methodology&rft.jtitle=Biomass%20conversion%20and%20biorefinery&rft.au=Morando,%20Luis%20E.%20Nochebuena&rft.date=2014-03-01&rft.volume=4&rft.issue=1&rft.spage=15&rft.epage=23&rft.pages=15-23&rft.issn=2190-6815&rft.eissn=2190-6823&rft_id=info:doi/10.1007/s13399-013-0091-5&rft_dat=%3Ccrossref_sprin%3E10_1007_s13399_013_0091_5%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-db89ed29ae673d04426ed468519a11abb60a9ab5078a761a0aa32df0b5fc7b863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true