Loading…
Cellulose acetate–silica fume membrane: characterization and application for separation of starch and maltose
Maltose is one of the starch derivatives. Maltose can be produced by starch hydrolysis using any kind of hydrolytic process. One of the methods to separate a mixture of both compounds is using porous membrane. In this research, a novel type of hybrid membrane was prepared from a mixture of cellulose...
Saved in:
Published in: | Iranian polymer journal 2013-05, Vol.22 (5), p.335-340 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Maltose is one of the starch derivatives. Maltose can be produced by starch hydrolysis using any kind of hydrolytic process. One of the methods to separate a mixture of both compounds is using porous membrane. In this research, a novel type of hybrid membrane was prepared from a mixture of cellulose acetate and silica fume. Silica fume is widely used in the domain of construction as cement material, whereas in this research silica fume was successfully used as membrane material. Various compositions of membrane dope solutions were prepared for obtaining the membranes used for separation of starch and maltose. Such synthesized membranes demonstrate a good performance in separation processes. The best performance is achieved when the composition of cellulose acetate in membrane dope solution is 15 % (w/w) in
N,N
-dimethylacetamide solvent and the mass ratio between cellulose acetate and silica fume is 4:1. For this composition, the rejection of membranes towards starch and maltose is 87 and 2 %, respectively, at working pressure of 3 bar and compaction time of 2 h. Infrared spectrum indicates no new peaks are found compared to raw materials’ spectral peaks. Thus, it can be concluded that the interaction between the cellulose acetate and silica fume is merely a physical type. From the observation of cross-sectional SEM images, we can remark that the morphology of such a membrane is porous. X-ray diffractogram indicates that the synthesized membranes are amorphous. |
---|---|
ISSN: | 1026-1265 1735-5265 |
DOI: | 10.1007/s13726-013-0132-8 |