Loading…
Soil moisture simulation using individual versus ensemble soft computing models
Soil moisture plays an important role in water distribution among various components of hydrological cycle and energy exchanges between the atmosphere and the earth’s surface. Its accurate estimation is necessary for optimal water management in agriculture, environment, and other related fields. Thi...
Saved in:
Published in: | International journal of environmental science and technology (Tehran) 2022-10, Vol.19 (10), p.10089-10104 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003 |
---|---|
cites | cdi_FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003 |
container_end_page | 10104 |
container_issue | 10 |
container_start_page | 10089 |
container_title | International journal of environmental science and technology (Tehran) |
container_volume | 19 |
creator | Zounemat-Kermani, M. Golestani Kermani, S. Alizamir, M. Fadaee, M. |
description | Soil moisture plays an important role in water distribution among various components of hydrological cycle and energy exchanges between the atmosphere and the earth’s surface. Its accurate estimation is necessary for optimal water management in agriculture, environment, and other related fields. This study describes the development and applications of individual machine learning models including artificial neural networks, radial basis function, multi-layer perceptron, multivariate adaptive regression splines, and extreme learning machine as well as the ensemble Bayesian model averaging methodology for computing soil moisture modeling. Eight climatological inputs are used for constructing the models and two distinct scenarios of (i) predicting soil moisture (
t
) and (ii) forecasting soil moisture (
t
+ 1) are designed based on different feature selection methods, such as the best subset selection and the historical correlation functions. The statistical evaluation shows that in predicting strategy, the Bayesian model averaging had the best (root mean square error = 0.0127 (m
3
/m
3
), mean absolute errors = 0.0092 (m
3
/m
3
)) and multivariate adaptive regression splines model had the weakest (root mean square error = 0.0227 (m
3
/m
3
), mean absolute errors = 0.0196 (m
3
/m
3
)) performance in the test stage. Also, in the forecasting strategy, the Bayesian model averaging had the best (root mean square error = 0.0023 (m
3
/m
3
), mean absolute errors = 0.00111 (m
3
/m
3
)) and radial basis function had the weakest (root mean square error = 0.0022 (m
3
/m
3
), mean absolute errors = 0.00062 (m
3
/m
3
) performance during the testing stage. Overall, the modeling efforts confirm that the Bayesian model averaging optimizes both the predicted and forecasted results. |
doi_str_mv | 10.1007/s13762-022-04202-y |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s13762_022_04202_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s13762_022_04202_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoWnaH-hKP-BWGsmWvSyhLwhk0XYtLFkKCrYVNFYgf1-nybqL4c7i3GE4hDxy9sQZU8_IhaqgYDCPBAbF8YosuBJlAZVg15edSwW35A5xx5ispOQLsvmKoadDDDjl5CiGIfftFOJIM4ZxS8PYhUPoctvTg0uYkboR3WD6mY1-ojYO-zydyCF2rsd7cuPbHt3DJZfk5-31e_VRrDfvn6uXdWEB-FTY2gtny6aWhklf1xycAVuDbyped6WrneAlAJjSskYobqVRpmmtUd4yy5hYEjjftSkiJuf1PoWhTUfNmT4p0Wclelai_5To41wS5xLO8Lh1Se9iTuP853-tX-BjZqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Soil moisture simulation using individual versus ensemble soft computing models</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Zounemat-Kermani, M. ; Golestani Kermani, S. ; Alizamir, M. ; Fadaee, M.</creator><creatorcontrib>Zounemat-Kermani, M. ; Golestani Kermani, S. ; Alizamir, M. ; Fadaee, M.</creatorcontrib><description>Soil moisture plays an important role in water distribution among various components of hydrological cycle and energy exchanges between the atmosphere and the earth’s surface. Its accurate estimation is necessary for optimal water management in agriculture, environment, and other related fields. This study describes the development and applications of individual machine learning models including artificial neural networks, radial basis function, multi-layer perceptron, multivariate adaptive regression splines, and extreme learning machine as well as the ensemble Bayesian model averaging methodology for computing soil moisture modeling. Eight climatological inputs are used for constructing the models and two distinct scenarios of (i) predicting soil moisture (
t
) and (ii) forecasting soil moisture (
t
+ 1) are designed based on different feature selection methods, such as the best subset selection and the historical correlation functions. The statistical evaluation shows that in predicting strategy, the Bayesian model averaging had the best (root mean square error = 0.0127 (m
3
/m
3
), mean absolute errors = 0.0092 (m
3
/m
3
)) and multivariate adaptive regression splines model had the weakest (root mean square error = 0.0227 (m
3
/m
3
), mean absolute errors = 0.0196 (m
3
/m
3
)) performance in the test stage. Also, in the forecasting strategy, the Bayesian model averaging had the best (root mean square error = 0.0023 (m
3
/m
3
), mean absolute errors = 0.00111 (m
3
/m
3
)) and radial basis function had the weakest (root mean square error = 0.0022 (m
3
/m
3
), mean absolute errors = 0.00062 (m
3
/m
3
) performance during the testing stage. Overall, the modeling efforts confirm that the Bayesian model averaging optimizes both the predicted and forecasted results.</description><identifier>ISSN: 1735-1472</identifier><identifier>EISSN: 1735-2630</identifier><identifier>DOI: 10.1007/s13762-022-04202-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Science and Engineering ; Original Paper ; Soil Science & Conservation ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>International journal of environmental science and technology (Tehran), 2022-10, Vol.19 (10), p.10089-10104</ispartof><rights>The Author(s) under exclusive licence to Iranian Society of Environmentalists (IRSEN) and Science and Research Branch, Islamic Azad University 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003</citedby><cites>FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003</cites><orcidid>0000-0002-1421-8671 ; 0000-0002-8732-3480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zounemat-Kermani, M.</creatorcontrib><creatorcontrib>Golestani Kermani, S.</creatorcontrib><creatorcontrib>Alizamir, M.</creatorcontrib><creatorcontrib>Fadaee, M.</creatorcontrib><title>Soil moisture simulation using individual versus ensemble soft computing models</title><title>International journal of environmental science and technology (Tehran)</title><addtitle>Int. J. Environ. Sci. Technol</addtitle><description>Soil moisture plays an important role in water distribution among various components of hydrological cycle and energy exchanges between the atmosphere and the earth’s surface. Its accurate estimation is necessary for optimal water management in agriculture, environment, and other related fields. This study describes the development and applications of individual machine learning models including artificial neural networks, radial basis function, multi-layer perceptron, multivariate adaptive regression splines, and extreme learning machine as well as the ensemble Bayesian model averaging methodology for computing soil moisture modeling. Eight climatological inputs are used for constructing the models and two distinct scenarios of (i) predicting soil moisture (
t
) and (ii) forecasting soil moisture (
t
+ 1) are designed based on different feature selection methods, such as the best subset selection and the historical correlation functions. The statistical evaluation shows that in predicting strategy, the Bayesian model averaging had the best (root mean square error = 0.0127 (m
3
/m
3
), mean absolute errors = 0.0092 (m
3
/m
3
)) and multivariate adaptive regression splines model had the weakest (root mean square error = 0.0227 (m
3
/m
3
), mean absolute errors = 0.0196 (m
3
/m
3
)) performance in the test stage. Also, in the forecasting strategy, the Bayesian model averaging had the best (root mean square error = 0.0023 (m
3
/m
3
), mean absolute errors = 0.00111 (m
3
/m
3
)) and radial basis function had the weakest (root mean square error = 0.0022 (m
3
/m
3
), mean absolute errors = 0.00062 (m
3
/m
3
) performance during the testing stage. Overall, the modeling efforts confirm that the Bayesian model averaging optimizes both the predicted and forecasted results.</description><subject>Aquatic Pollution</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Science and Engineering</subject><subject>Original Paper</subject><subject>Soil Science & Conservation</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1735-1472</issn><issn>1735-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoWnaH-hKP-BWGsmWvSyhLwhk0XYtLFkKCrYVNFYgf1-nybqL4c7i3GE4hDxy9sQZU8_IhaqgYDCPBAbF8YosuBJlAZVg15edSwW35A5xx5ispOQLsvmKoadDDDjl5CiGIfftFOJIM4ZxS8PYhUPoctvTg0uYkboR3WD6mY1-ojYO-zydyCF2rsd7cuPbHt3DJZfk5-31e_VRrDfvn6uXdWEB-FTY2gtny6aWhklf1xycAVuDbyped6WrneAlAJjSskYobqVRpmmtUd4yy5hYEjjftSkiJuf1PoWhTUfNmT4p0Wclelai_5To41wS5xLO8Lh1Se9iTuP853-tX-BjZqw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zounemat-Kermani, M.</creator><creator>Golestani Kermani, S.</creator><creator>Alizamir, M.</creator><creator>Fadaee, M.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1421-8671</orcidid><orcidid>https://orcid.org/0000-0002-8732-3480</orcidid></search><sort><creationdate>20221001</creationdate><title>Soil moisture simulation using individual versus ensemble soft computing models</title><author>Zounemat-Kermani, M. ; Golestani Kermani, S. ; Alizamir, M. ; Fadaee, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aquatic Pollution</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Science and Engineering</topic><topic>Original Paper</topic><topic>Soil Science & Conservation</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zounemat-Kermani, M.</creatorcontrib><creatorcontrib>Golestani Kermani, S.</creatorcontrib><creatorcontrib>Alizamir, M.</creatorcontrib><creatorcontrib>Fadaee, M.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of environmental science and technology (Tehran)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zounemat-Kermani, M.</au><au>Golestani Kermani, S.</au><au>Alizamir, M.</au><au>Fadaee, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil moisture simulation using individual versus ensemble soft computing models</atitle><jtitle>International journal of environmental science and technology (Tehran)</jtitle><stitle>Int. J. Environ. Sci. Technol</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>19</volume><issue>10</issue><spage>10089</spage><epage>10104</epage><pages>10089-10104</pages><issn>1735-1472</issn><eissn>1735-2630</eissn><abstract>Soil moisture plays an important role in water distribution among various components of hydrological cycle and energy exchanges between the atmosphere and the earth’s surface. Its accurate estimation is necessary for optimal water management in agriculture, environment, and other related fields. This study describes the development and applications of individual machine learning models including artificial neural networks, radial basis function, multi-layer perceptron, multivariate adaptive regression splines, and extreme learning machine as well as the ensemble Bayesian model averaging methodology for computing soil moisture modeling. Eight climatological inputs are used for constructing the models and two distinct scenarios of (i) predicting soil moisture (
t
) and (ii) forecasting soil moisture (
t
+ 1) are designed based on different feature selection methods, such as the best subset selection and the historical correlation functions. The statistical evaluation shows that in predicting strategy, the Bayesian model averaging had the best (root mean square error = 0.0127 (m
3
/m
3
), mean absolute errors = 0.0092 (m
3
/m
3
)) and multivariate adaptive regression splines model had the weakest (root mean square error = 0.0227 (m
3
/m
3
), mean absolute errors = 0.0196 (m
3
/m
3
)) performance in the test stage. Also, in the forecasting strategy, the Bayesian model averaging had the best (root mean square error = 0.0023 (m
3
/m
3
), mean absolute errors = 0.00111 (m
3
/m
3
)) and radial basis function had the weakest (root mean square error = 0.0022 (m
3
/m
3
), mean absolute errors = 0.00062 (m
3
/m
3
) performance during the testing stage. Overall, the modeling efforts confirm that the Bayesian model averaging optimizes both the predicted and forecasted results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13762-022-04202-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1421-8671</orcidid><orcidid>https://orcid.org/0000-0002-8732-3480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1735-1472 |
ispartof | International journal of environmental science and technology (Tehran), 2022-10, Vol.19 (10), p.10089-10104 |
issn | 1735-1472 1735-2630 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s13762_022_04202_y |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Aquatic Pollution Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Science and Engineering Original Paper Soil Science & Conservation Waste Water Technology Water Management Water Pollution Control |
title | Soil moisture simulation using individual versus ensemble soft computing models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20moisture%20simulation%20using%20individual%20versus%20ensemble%20soft%20computing%20models&rft.jtitle=International%20journal%20of%20environmental%20science%20and%20technology%20(Tehran)&rft.au=Zounemat-Kermani,%20M.&rft.date=2022-10-01&rft.volume=19&rft.issue=10&rft.spage=10089&rft.epage=10104&rft.pages=10089-10104&rft.issn=1735-1472&rft.eissn=1735-2630&rft_id=info:doi/10.1007/s13762-022-04202-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s13762_022_04202_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |