Loading…

Soil moisture simulation using individual versus ensemble soft computing models

Soil moisture plays an important role in water distribution among various components of hydrological cycle and energy exchanges between the atmosphere and the earth’s surface. Its accurate estimation is necessary for optimal water management in agriculture, environment, and other related fields. Thi...

Full description

Saved in:
Bibliographic Details
Published in:International journal of environmental science and technology (Tehran) 2022-10, Vol.19 (10), p.10089-10104
Main Authors: Zounemat-Kermani, M., Golestani Kermani, S., Alizamir, M., Fadaee, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003
cites cdi_FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003
container_end_page 10104
container_issue 10
container_start_page 10089
container_title International journal of environmental science and technology (Tehran)
container_volume 19
creator Zounemat-Kermani, M.
Golestani Kermani, S.
Alizamir, M.
Fadaee, M.
description Soil moisture plays an important role in water distribution among various components of hydrological cycle and energy exchanges between the atmosphere and the earth’s surface. Its accurate estimation is necessary for optimal water management in agriculture, environment, and other related fields. This study describes the development and applications of individual machine learning models including artificial neural networks, radial basis function, multi-layer perceptron, multivariate adaptive regression splines, and extreme learning machine as well as the ensemble Bayesian model averaging methodology for computing soil moisture modeling. Eight climatological inputs are used for constructing the models and two distinct scenarios of (i) predicting soil moisture ( t ) and (ii) forecasting soil moisture ( t  + 1) are designed based on different feature selection methods, such as the best subset selection and the historical correlation functions. The statistical evaluation shows that in predicting strategy, the Bayesian model averaging had the best (root mean square error = 0.0127 (m 3 /m 3 ), mean absolute errors = 0.0092 (m 3 /m 3 )) and multivariate adaptive regression splines model had the weakest (root mean square error = 0.0227 (m 3 /m 3 ), mean absolute errors = 0.0196 (m 3 /m 3 )) performance in the test stage. Also, in the forecasting strategy, the Bayesian model averaging had the best (root mean square error = 0.0023 (m 3 /m 3 ), mean absolute errors = 0.00111 (m 3 /m 3 )) and radial basis function had the weakest (root mean square error = 0.0022 (m 3 /m 3 ), mean absolute errors = 0.00062 (m 3 /m 3 ) performance during the testing stage. Overall, the modeling efforts confirm that the Bayesian model averaging optimizes both the predicted and forecasted results.
doi_str_mv 10.1007/s13762-022-04202-y
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s13762_022_04202_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s13762_022_04202_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoWnaH-hKP-BWGsmWvSyhLwhk0XYtLFkKCrYVNFYgf1-nybqL4c7i3GE4hDxy9sQZU8_IhaqgYDCPBAbF8YosuBJlAZVg15edSwW35A5xx5ispOQLsvmKoadDDDjl5CiGIfftFOJIM4ZxS8PYhUPoctvTg0uYkboR3WD6mY1-ojYO-zydyCF2rsd7cuPbHt3DJZfk5-31e_VRrDfvn6uXdWEB-FTY2gtny6aWhklf1xycAVuDbyped6WrneAlAJjSskYobqVRpmmtUd4yy5hYEjjftSkiJuf1PoWhTUfNmT4p0Wclelai_5To41wS5xLO8Lh1Se9iTuP853-tX-BjZqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Soil moisture simulation using individual versus ensemble soft computing models</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Zounemat-Kermani, M. ; Golestani Kermani, S. ; Alizamir, M. ; Fadaee, M.</creator><creatorcontrib>Zounemat-Kermani, M. ; Golestani Kermani, S. ; Alizamir, M. ; Fadaee, M.</creatorcontrib><description>Soil moisture plays an important role in water distribution among various components of hydrological cycle and energy exchanges between the atmosphere and the earth’s surface. Its accurate estimation is necessary for optimal water management in agriculture, environment, and other related fields. This study describes the development and applications of individual machine learning models including artificial neural networks, radial basis function, multi-layer perceptron, multivariate adaptive regression splines, and extreme learning machine as well as the ensemble Bayesian model averaging methodology for computing soil moisture modeling. Eight climatological inputs are used for constructing the models and two distinct scenarios of (i) predicting soil moisture ( t ) and (ii) forecasting soil moisture ( t  + 1) are designed based on different feature selection methods, such as the best subset selection and the historical correlation functions. The statistical evaluation shows that in predicting strategy, the Bayesian model averaging had the best (root mean square error = 0.0127 (m 3 /m 3 ), mean absolute errors = 0.0092 (m 3 /m 3 )) and multivariate adaptive regression splines model had the weakest (root mean square error = 0.0227 (m 3 /m 3 ), mean absolute errors = 0.0196 (m 3 /m 3 )) performance in the test stage. Also, in the forecasting strategy, the Bayesian model averaging had the best (root mean square error = 0.0023 (m 3 /m 3 ), mean absolute errors = 0.00111 (m 3 /m 3 )) and radial basis function had the weakest (root mean square error = 0.0022 (m 3 /m 3 ), mean absolute errors = 0.00062 (m 3 /m 3 ) performance during the testing stage. Overall, the modeling efforts confirm that the Bayesian model averaging optimizes both the predicted and forecasted results.</description><identifier>ISSN: 1735-1472</identifier><identifier>EISSN: 1735-2630</identifier><identifier>DOI: 10.1007/s13762-022-04202-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Aquatic Pollution ; Earth and Environmental Science ; Ecotoxicology ; Environment ; Environmental Chemistry ; Environmental Science and Engineering ; Original Paper ; Soil Science &amp; Conservation ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>International journal of environmental science and technology (Tehran), 2022-10, Vol.19 (10), p.10089-10104</ispartof><rights>The Author(s) under exclusive licence to Iranian Society of Environmentalists (IRSEN) and Science and Research Branch, Islamic Azad University 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003</citedby><cites>FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003</cites><orcidid>0000-0002-1421-8671 ; 0000-0002-8732-3480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zounemat-Kermani, M.</creatorcontrib><creatorcontrib>Golestani Kermani, S.</creatorcontrib><creatorcontrib>Alizamir, M.</creatorcontrib><creatorcontrib>Fadaee, M.</creatorcontrib><title>Soil moisture simulation using individual versus ensemble soft computing models</title><title>International journal of environmental science and technology (Tehran)</title><addtitle>Int. J. Environ. Sci. Technol</addtitle><description>Soil moisture plays an important role in water distribution among various components of hydrological cycle and energy exchanges between the atmosphere and the earth’s surface. Its accurate estimation is necessary for optimal water management in agriculture, environment, and other related fields. This study describes the development and applications of individual machine learning models including artificial neural networks, radial basis function, multi-layer perceptron, multivariate adaptive regression splines, and extreme learning machine as well as the ensemble Bayesian model averaging methodology for computing soil moisture modeling. Eight climatological inputs are used for constructing the models and two distinct scenarios of (i) predicting soil moisture ( t ) and (ii) forecasting soil moisture ( t  + 1) are designed based on different feature selection methods, such as the best subset selection and the historical correlation functions. The statistical evaluation shows that in predicting strategy, the Bayesian model averaging had the best (root mean square error = 0.0127 (m 3 /m 3 ), mean absolute errors = 0.0092 (m 3 /m 3 )) and multivariate adaptive regression splines model had the weakest (root mean square error = 0.0227 (m 3 /m 3 ), mean absolute errors = 0.0196 (m 3 /m 3 )) performance in the test stage. Also, in the forecasting strategy, the Bayesian model averaging had the best (root mean square error = 0.0023 (m 3 /m 3 ), mean absolute errors = 0.00111 (m 3 /m 3 )) and radial basis function had the weakest (root mean square error = 0.0022 (m 3 /m 3 ), mean absolute errors = 0.00062 (m 3 /m 3 ) performance during the testing stage. Overall, the modeling efforts confirm that the Bayesian model averaging optimizes both the predicted and forecasted results.</description><subject>Aquatic Pollution</subject><subject>Earth and Environmental Science</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Chemistry</subject><subject>Environmental Science and Engineering</subject><subject>Original Paper</subject><subject>Soil Science &amp; Conservation</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1735-1472</issn><issn>1735-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoWnaH-hKP-BWGsmWvSyhLwhk0XYtLFkKCrYVNFYgf1-nybqL4c7i3GE4hDxy9sQZU8_IhaqgYDCPBAbF8YosuBJlAZVg15edSwW35A5xx5ispOQLsvmKoadDDDjl5CiGIfftFOJIM4ZxS8PYhUPoctvTg0uYkboR3WD6mY1-ojYO-zydyCF2rsd7cuPbHt3DJZfk5-31e_VRrDfvn6uXdWEB-FTY2gtny6aWhklf1xycAVuDbyped6WrneAlAJjSskYobqVRpmmtUd4yy5hYEjjftSkiJuf1PoWhTUfNmT4p0Wclelai_5To41wS5xLO8Lh1Se9iTuP853-tX-BjZqw</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zounemat-Kermani, M.</creator><creator>Golestani Kermani, S.</creator><creator>Alizamir, M.</creator><creator>Fadaee, M.</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1421-8671</orcidid><orcidid>https://orcid.org/0000-0002-8732-3480</orcidid></search><sort><creationdate>20221001</creationdate><title>Soil moisture simulation using individual versus ensemble soft computing models</title><author>Zounemat-Kermani, M. ; Golestani Kermani, S. ; Alizamir, M. ; Fadaee, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aquatic Pollution</topic><topic>Earth and Environmental Science</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Chemistry</topic><topic>Environmental Science and Engineering</topic><topic>Original Paper</topic><topic>Soil Science &amp; Conservation</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zounemat-Kermani, M.</creatorcontrib><creatorcontrib>Golestani Kermani, S.</creatorcontrib><creatorcontrib>Alizamir, M.</creatorcontrib><creatorcontrib>Fadaee, M.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of environmental science and technology (Tehran)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zounemat-Kermani, M.</au><au>Golestani Kermani, S.</au><au>Alizamir, M.</au><au>Fadaee, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil moisture simulation using individual versus ensemble soft computing models</atitle><jtitle>International journal of environmental science and technology (Tehran)</jtitle><stitle>Int. J. Environ. Sci. Technol</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>19</volume><issue>10</issue><spage>10089</spage><epage>10104</epage><pages>10089-10104</pages><issn>1735-1472</issn><eissn>1735-2630</eissn><abstract>Soil moisture plays an important role in water distribution among various components of hydrological cycle and energy exchanges between the atmosphere and the earth’s surface. Its accurate estimation is necessary for optimal water management in agriculture, environment, and other related fields. This study describes the development and applications of individual machine learning models including artificial neural networks, radial basis function, multi-layer perceptron, multivariate adaptive regression splines, and extreme learning machine as well as the ensemble Bayesian model averaging methodology for computing soil moisture modeling. Eight climatological inputs are used for constructing the models and two distinct scenarios of (i) predicting soil moisture ( t ) and (ii) forecasting soil moisture ( t  + 1) are designed based on different feature selection methods, such as the best subset selection and the historical correlation functions. The statistical evaluation shows that in predicting strategy, the Bayesian model averaging had the best (root mean square error = 0.0127 (m 3 /m 3 ), mean absolute errors = 0.0092 (m 3 /m 3 )) and multivariate adaptive regression splines model had the weakest (root mean square error = 0.0227 (m 3 /m 3 ), mean absolute errors = 0.0196 (m 3 /m 3 )) performance in the test stage. Also, in the forecasting strategy, the Bayesian model averaging had the best (root mean square error = 0.0023 (m 3 /m 3 ), mean absolute errors = 0.00111 (m 3 /m 3 )) and radial basis function had the weakest (root mean square error = 0.0022 (m 3 /m 3 ), mean absolute errors = 0.00062 (m 3 /m 3 ) performance during the testing stage. Overall, the modeling efforts confirm that the Bayesian model averaging optimizes both the predicted and forecasted results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13762-022-04202-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1421-8671</orcidid><orcidid>https://orcid.org/0000-0002-8732-3480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1735-1472
ispartof International journal of environmental science and technology (Tehran), 2022-10, Vol.19 (10), p.10089-10104
issn 1735-1472
1735-2630
language eng
recordid cdi_crossref_primary_10_1007_s13762_022_04202_y
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Aquatic Pollution
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Science and Engineering
Original Paper
Soil Science & Conservation
Waste Water Technology
Water Management
Water Pollution Control
title Soil moisture simulation using individual versus ensemble soft computing models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A35%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil%20moisture%20simulation%20using%20individual%20versus%20ensemble%20soft%20computing%20models&rft.jtitle=International%20journal%20of%20environmental%20science%20and%20technology%20(Tehran)&rft.au=Zounemat-Kermani,%20M.&rft.date=2022-10-01&rft.volume=19&rft.issue=10&rft.spage=10089&rft.epage=10104&rft.pages=10089-10104&rft.issn=1735-1472&rft.eissn=1735-2630&rft_id=info:doi/10.1007/s13762-022-04202-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s13762_022_04202_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c221t-c8f3ec5984b04f8812eb2c82f9618d5e8e315222b5c09371c4b7b9acb7fc0c003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true