Loading…

Bipartite Theory of Graphs: Outer-Independent Domination

Let G = ( V , E ) be a bipartite graph with partite sets X and Y . Two vertices of X are X -adjacent if they have a common neighbor in Y , and they are X -independent otherwise. A subset D ⊆ X is an X -outer-independent dominating set of G if every vertex of X \ D has an X -neighbor in D , and all v...

Full description

Saved in:
Bibliographic Details
Published in:National Academy science letters 2015-04, Vol.38 (2), p.169-172
Main Authors: Krzywkowski, Marcin, Venkatakrishnan, Yanamandram B.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-14c33689ac5e32b5011caeae2e112881588d56c23d084d08f954def284caf8983
cites
container_end_page 172
container_issue 2
container_start_page 169
container_title National Academy science letters
container_volume 38
creator Krzywkowski, Marcin
Venkatakrishnan, Yanamandram B.
description Let G = ( V , E ) be a bipartite graph with partite sets X and Y . Two vertices of X are X -adjacent if they have a common neighbor in Y , and they are X -independent otherwise. A subset D ⊆ X is an X -outer-independent dominating set of G if every vertex of X \ D has an X -neighbor in D , and all vertices of X \ D are pairwise X -independent. The X -outer-independent domination number of G , denoted by γ X o i ( G ) , is the minimum cardinality of an X -outer-independent dominating set of G . We prove several properties and bounds on the number γ X o i ( G ) .
doi_str_mv 10.1007/s40009-014-0315-7
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s40009_014_0315_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s40009_014_0315_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-14c33689ac5e32b5011caeae2e112881588d56c23d084d08f954def284caf8983</originalsourceid><addsrcrecordid>eNp9j79OwzAQhy0EElHpA7DlBQx3jp04bFCgVKrUpUhslnEuNBVNItsd-va4SmeG-zN8v9N9jN0jPCBA9RgkANQcUHIoUPHqimVCKOBYKXnNMjjvSuLXLZuHsE8wqFIpFBnTL91ofewi5dsdDf6UD22-9Hbchad8c4zk-apvaKTU-pi_Doeut7Eb-jt209rfQPPLnLHP97ft4oOvN8vV4nnNndA6cpSuKEpdW6eoEN8KEJ0lS4IQE4BK60aVThQNaJmqrZVsqBVaOtvqWhczhtNd54cQPLVm9N3B-pNBMGd7M9mbZG_O9qZKGTFlQmL7H_JmPxx9n978J_QHYeRbuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bipartite Theory of Graphs: Outer-Independent Domination</title><source>Springer Nature</source><creator>Krzywkowski, Marcin ; Venkatakrishnan, Yanamandram B.</creator><creatorcontrib>Krzywkowski, Marcin ; Venkatakrishnan, Yanamandram B.</creatorcontrib><description>Let G = ( V , E ) be a bipartite graph with partite sets X and Y . Two vertices of X are X -adjacent if they have a common neighbor in Y , and they are X -independent otherwise. A subset D ⊆ X is an X -outer-independent dominating set of G if every vertex of X \ D has an X -neighbor in D , and all vertices of X \ D are pairwise X -independent. The X -outer-independent domination number of G , denoted by γ X o i ( G ) , is the minimum cardinality of an X -outer-independent dominating set of G . We prove several properties and bounds on the number γ X o i ( G ) .</description><identifier>ISSN: 0250-541X</identifier><identifier>EISSN: 2250-1754</identifier><identifier>DOI: 10.1007/s40009-014-0315-7</identifier><language>eng</language><publisher>India: Springer India</publisher><subject>History of Science ; Humanities and Social Sciences ; multidisciplinary ; Science ; Science (multidisciplinary) ; Short Communication</subject><ispartof>National Academy science letters, 2015-04, Vol.38 (2), p.169-172</ispartof><rights>The National Academy of Sciences, India 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-14c33689ac5e32b5011caeae2e112881588d56c23d084d08f954def284caf8983</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Krzywkowski, Marcin</creatorcontrib><creatorcontrib>Venkatakrishnan, Yanamandram B.</creatorcontrib><title>Bipartite Theory of Graphs: Outer-Independent Domination</title><title>National Academy science letters</title><addtitle>Natl. Acad. Sci. Lett</addtitle><description>Let G = ( V , E ) be a bipartite graph with partite sets X and Y . Two vertices of X are X -adjacent if they have a common neighbor in Y , and they are X -independent otherwise. A subset D ⊆ X is an X -outer-independent dominating set of G if every vertex of X \ D has an X -neighbor in D , and all vertices of X \ D are pairwise X -independent. The X -outer-independent domination number of G , denoted by γ X o i ( G ) , is the minimum cardinality of an X -outer-independent dominating set of G . We prove several properties and bounds on the number γ X o i ( G ) .</description><subject>History of Science</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Short Communication</subject><issn>0250-541X</issn><issn>2250-1754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9j79OwzAQhy0EElHpA7DlBQx3jp04bFCgVKrUpUhslnEuNBVNItsd-va4SmeG-zN8v9N9jN0jPCBA9RgkANQcUHIoUPHqimVCKOBYKXnNMjjvSuLXLZuHsE8wqFIpFBnTL91ofewi5dsdDf6UD22-9Hbchad8c4zk-apvaKTU-pi_Doeut7Eb-jt209rfQPPLnLHP97ft4oOvN8vV4nnNndA6cpSuKEpdW6eoEN8KEJ0lS4IQE4BK60aVThQNaJmqrZVsqBVaOtvqWhczhtNd54cQPLVm9N3B-pNBMGd7M9mbZG_O9qZKGTFlQmL7H_JmPxx9n978J_QHYeRbuQ</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Krzywkowski, Marcin</creator><creator>Venkatakrishnan, Yanamandram B.</creator><general>Springer India</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150401</creationdate><title>Bipartite Theory of Graphs: Outer-Independent Domination</title><author>Krzywkowski, Marcin ; Venkatakrishnan, Yanamandram B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-14c33689ac5e32b5011caeae2e112881588d56c23d084d08f954def284caf8983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>History of Science</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Short Communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Krzywkowski, Marcin</creatorcontrib><creatorcontrib>Venkatakrishnan, Yanamandram B.</creatorcontrib><collection>CrossRef</collection><jtitle>National Academy science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krzywkowski, Marcin</au><au>Venkatakrishnan, Yanamandram B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bipartite Theory of Graphs: Outer-Independent Domination</atitle><jtitle>National Academy science letters</jtitle><stitle>Natl. Acad. Sci. Lett</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>38</volume><issue>2</issue><spage>169</spage><epage>172</epage><pages>169-172</pages><issn>0250-541X</issn><eissn>2250-1754</eissn><abstract>Let G = ( V , E ) be a bipartite graph with partite sets X and Y . Two vertices of X are X -adjacent if they have a common neighbor in Y , and they are X -independent otherwise. A subset D ⊆ X is an X -outer-independent dominating set of G if every vertex of X \ D has an X -neighbor in D , and all vertices of X \ D are pairwise X -independent. The X -outer-independent domination number of G , denoted by γ X o i ( G ) , is the minimum cardinality of an X -outer-independent dominating set of G . We prove several properties and bounds on the number γ X o i ( G ) .</abstract><cop>India</cop><pub>Springer India</pub><doi>10.1007/s40009-014-0315-7</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0250-541X
ispartof National Academy science letters, 2015-04, Vol.38 (2), p.169-172
issn 0250-541X
2250-1754
language eng
recordid cdi_crossref_primary_10_1007_s40009_014_0315_7
source Springer Nature
subjects History of Science
Humanities and Social Sciences
multidisciplinary
Science
Science (multidisciplinary)
Short Communication
title Bipartite Theory of Graphs: Outer-Independent Domination
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bipartite%20Theory%20of%20Graphs:%20Outer-Independent%20Domination&rft.jtitle=National%20Academy%20science%20letters&rft.au=Krzywkowski,%20Marcin&rft.date=2015-04-01&rft.volume=38&rft.issue=2&rft.spage=169&rft.epage=172&rft.pages=169-172&rft.issn=0250-541X&rft.eissn=2250-1754&rft_id=info:doi/10.1007/s40009-014-0315-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s40009_014_0315_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-14c33689ac5e32b5011caeae2e112881588d56c23d084d08f954def284caf8983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true