Loading…

An Adaptive Local Variational Iteration Method for Orbit Propagation in Astrodynamics Problems

In this paper, a highly accurate and efficient Adaptive Local Variational Iteration Method (ALVIM) is presented to fulfil the need of the astrodynamics society for fast and accurate computational methods for guidance and control. The analytical iteration formula of this method is derived by using a...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the astronautical sciences 2023-02, Vol.70 (1), Article 2
Main Authors: Wang, Xuechuan, Elgohary, Tarek A., Zhang, Zhe, Tasif, Tahsinul H., Feng, Haoyang, Atluri, Satya N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c242t-fb4858b3664157375a53eba4292b093fbe2fba8553c19c7d5bede310584bb9fa3
container_end_page
container_issue 1
container_start_page
container_title The Journal of the astronautical sciences
container_volume 70
creator Wang, Xuechuan
Elgohary, Tarek A.
Zhang, Zhe
Tasif, Tahsinul H.
Feng, Haoyang
Atluri, Satya N.
description In this paper, a highly accurate and efficient Adaptive Local Variational Iteration Method (ALVIM) is presented to fulfil the need of the astrodynamics society for fast and accurate computational methods for guidance and control. The analytical iteration formula of this method is derived by using a general form of the first order nonlinear differential equations, followed by straightforward discretization using Chebyshev polynomials and collocation. The resulting numerical algorithm is very concise and easy to use, only involving highly sparse matrix operations of addition and multiplication, and no inversion of the Jacobian is required. Apart from the simple yet efficient iteration formula, a straightforward adaptive scheme is introduced to refine the step size and the collocation nodes at each time segment. The presented adaptive method guarantees prescribed accuracy without manual tuning of the algorithm. The computational cost of ALVIM, in terms of functional evaluations, is 1–2 orders of magnitude lower than adaptive finite difference methods. Numerical results of a large amplitude pendulum, perturbed two-body problem, and three-body problem validate the high accuracy and efficiency of this easy-to-use adaptive method.
doi_str_mv 10.1007/s40295-023-00366-y
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s40295_023_00366_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s40295_023_00366_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-fb4858b3664157375a53eba4292b093fbe2fba8553c19c7d5bede310584bb9fa3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcPIPGPyIm-QYVTwqBZUDcMSyE7u4auLINkj5e5yGQ0-cdrQzs9oZAG4JviMY5_chw7TkCFOGMGarFRrPwIKSacVzcn6CL8FVCPskIrgkC_BZ9bBq5RDtj4a1a-QBfkhvZbSuT3gTtT9i-KLjl2uhcR5uvbIRvno3yN1M2nQkRO_asZedbcJEqoPuwjW4MPIQ9M3fXIL3x4e39TOqt0-bdVWjhmY0IqOyghcqPZ4RnrOcS860khktqcIlM0pTo2TBOWtI2eQtV7rVKQEvMqVKI9kS0Plu410IXhsxeNtJPwqCxdSQmBsSqSFxbEiMycRmU0jifqe92Ltvn2KH_1y_xMdrNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Adaptive Local Variational Iteration Method for Orbit Propagation in Astrodynamics Problems</title><source>Springer Nature</source><creator>Wang, Xuechuan ; Elgohary, Tarek A. ; Zhang, Zhe ; Tasif, Tahsinul H. ; Feng, Haoyang ; Atluri, Satya N.</creator><creatorcontrib>Wang, Xuechuan ; Elgohary, Tarek A. ; Zhang, Zhe ; Tasif, Tahsinul H. ; Feng, Haoyang ; Atluri, Satya N.</creatorcontrib><description>In this paper, a highly accurate and efficient Adaptive Local Variational Iteration Method (ALVIM) is presented to fulfil the need of the astrodynamics society for fast and accurate computational methods for guidance and control. The analytical iteration formula of this method is derived by using a general form of the first order nonlinear differential equations, followed by straightforward discretization using Chebyshev polynomials and collocation. The resulting numerical algorithm is very concise and easy to use, only involving highly sparse matrix operations of addition and multiplication, and no inversion of the Jacobian is required. Apart from the simple yet efficient iteration formula, a straightforward adaptive scheme is introduced to refine the step size and the collocation nodes at each time segment. The presented adaptive method guarantees prescribed accuracy without manual tuning of the algorithm. The computational cost of ALVIM, in terms of functional evaluations, is 1–2 orders of magnitude lower than adaptive finite difference methods. Numerical results of a large amplitude pendulum, perturbed two-body problem, and three-body problem validate the high accuracy and efficiency of this easy-to-use adaptive method.</description><identifier>ISSN: 2195-0571</identifier><identifier>EISSN: 2195-0571</identifier><identifier>DOI: 10.1007/s40295-023-00366-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Aerospace Technology and Astronautics ; Engineering ; Mathematical Applications in the Physical Sciences ; Original Article ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics</subject><ispartof>The Journal of the astronautical sciences, 2023-02, Vol.70 (1), Article 2</ispartof><rights>The Author(s), under exclusive licence to American Astronautical Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-fb4858b3664157375a53eba4292b093fbe2fba8553c19c7d5bede310584bb9fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Xuechuan</creatorcontrib><creatorcontrib>Elgohary, Tarek A.</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Tasif, Tahsinul H.</creatorcontrib><creatorcontrib>Feng, Haoyang</creatorcontrib><creatorcontrib>Atluri, Satya N.</creatorcontrib><title>An Adaptive Local Variational Iteration Method for Orbit Propagation in Astrodynamics Problems</title><title>The Journal of the astronautical sciences</title><addtitle>J Astronaut Sci</addtitle><description>In this paper, a highly accurate and efficient Adaptive Local Variational Iteration Method (ALVIM) is presented to fulfil the need of the astrodynamics society for fast and accurate computational methods for guidance and control. The analytical iteration formula of this method is derived by using a general form of the first order nonlinear differential equations, followed by straightforward discretization using Chebyshev polynomials and collocation. The resulting numerical algorithm is very concise and easy to use, only involving highly sparse matrix operations of addition and multiplication, and no inversion of the Jacobian is required. Apart from the simple yet efficient iteration formula, a straightforward adaptive scheme is introduced to refine the step size and the collocation nodes at each time segment. The presented adaptive method guarantees prescribed accuracy without manual tuning of the algorithm. The computational cost of ALVIM, in terms of functional evaluations, is 1–2 orders of magnitude lower than adaptive finite difference methods. Numerical results of a large amplitude pendulum, perturbed two-body problem, and three-body problem validate the high accuracy and efficiency of this easy-to-use adaptive method.</description><subject>Aerospace Technology and Astronautics</subject><subject>Engineering</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Original Article</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><issn>2195-0571</issn><issn>2195-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcPIPGPyIm-QYVTwqBZUDcMSyE7u4auLINkj5e5yGQ0-cdrQzs9oZAG4JviMY5_chw7TkCFOGMGarFRrPwIKSacVzcn6CL8FVCPskIrgkC_BZ9bBq5RDtj4a1a-QBfkhvZbSuT3gTtT9i-KLjl2uhcR5uvbIRvno3yN1M2nQkRO_asZedbcJEqoPuwjW4MPIQ9M3fXIL3x4e39TOqt0-bdVWjhmY0IqOyghcqPZ4RnrOcS860khktqcIlM0pTo2TBOWtI2eQtV7rVKQEvMqVKI9kS0Plu410IXhsxeNtJPwqCxdSQmBsSqSFxbEiMycRmU0jifqe92Ltvn2KH_1y_xMdrNw</recordid><startdate>20230209</startdate><enddate>20230209</enddate><creator>Wang, Xuechuan</creator><creator>Elgohary, Tarek A.</creator><creator>Zhang, Zhe</creator><creator>Tasif, Tahsinul H.</creator><creator>Feng, Haoyang</creator><creator>Atluri, Satya N.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230209</creationdate><title>An Adaptive Local Variational Iteration Method for Orbit Propagation in Astrodynamics Problems</title><author>Wang, Xuechuan ; Elgohary, Tarek A. ; Zhang, Zhe ; Tasif, Tahsinul H. ; Feng, Haoyang ; Atluri, Satya N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-fb4858b3664157375a53eba4292b093fbe2fba8553c19c7d5bede310584bb9fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Engineering</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Original Article</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xuechuan</creatorcontrib><creatorcontrib>Elgohary, Tarek A.</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Tasif, Tahsinul H.</creatorcontrib><creatorcontrib>Feng, Haoyang</creatorcontrib><creatorcontrib>Atluri, Satya N.</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of the astronautical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xuechuan</au><au>Elgohary, Tarek A.</au><au>Zhang, Zhe</au><au>Tasif, Tahsinul H.</au><au>Feng, Haoyang</au><au>Atluri, Satya N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptive Local Variational Iteration Method for Orbit Propagation in Astrodynamics Problems</atitle><jtitle>The Journal of the astronautical sciences</jtitle><stitle>J Astronaut Sci</stitle><date>2023-02-09</date><risdate>2023</risdate><volume>70</volume><issue>1</issue><artnum>2</artnum><issn>2195-0571</issn><eissn>2195-0571</eissn><abstract>In this paper, a highly accurate and efficient Adaptive Local Variational Iteration Method (ALVIM) is presented to fulfil the need of the astrodynamics society for fast and accurate computational methods for guidance and control. The analytical iteration formula of this method is derived by using a general form of the first order nonlinear differential equations, followed by straightforward discretization using Chebyshev polynomials and collocation. The resulting numerical algorithm is very concise and easy to use, only involving highly sparse matrix operations of addition and multiplication, and no inversion of the Jacobian is required. Apart from the simple yet efficient iteration formula, a straightforward adaptive scheme is introduced to refine the step size and the collocation nodes at each time segment. The presented adaptive method guarantees prescribed accuracy without manual tuning of the algorithm. The computational cost of ALVIM, in terms of functional evaluations, is 1–2 orders of magnitude lower than adaptive finite difference methods. Numerical results of a large amplitude pendulum, perturbed two-body problem, and three-body problem validate the high accuracy and efficiency of this easy-to-use adaptive method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s40295-023-00366-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 2195-0571
ispartof The Journal of the astronautical sciences, 2023-02, Vol.70 (1), Article 2
issn 2195-0571
2195-0571
language eng
recordid cdi_crossref_primary_10_1007_s40295_023_00366_y
source Springer Nature
subjects Aerospace Technology and Astronautics
Engineering
Mathematical Applications in the Physical Sciences
Original Article
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
title An Adaptive Local Variational Iteration Method for Orbit Propagation in Astrodynamics Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A24%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptive%20Local%20Variational%20Iteration%20Method%20for%20Orbit%20Propagation%20in%20Astrodynamics%20Problems&rft.jtitle=The%20Journal%20of%20the%20astronautical%20sciences&rft.au=Wang,%20Xuechuan&rft.date=2023-02-09&rft.volume=70&rft.issue=1&rft.artnum=2&rft.issn=2195-0571&rft.eissn=2195-0571&rft_id=info:doi/10.1007/s40295-023-00366-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s40295_023_00366_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-fb4858b3664157375a53eba4292b093fbe2fba8553c19c7d5bede310584bb9fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true