Loading…
Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem
The pole assignment problem (PAP) is a special algebraic inverse eigenvalue problem. In this paper, we present two types of algorithms, namely a quasi-Newton method with line search and some variants of the inexact Newton methods to tackle that problem. For a nonmonotone version of inexact Newton–Kr...
Saved in:
Published in: | Computational and Applied Mathematics 2014-10, Vol.33 (3), p.517-542 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33 |
container_end_page | 542 |
container_issue | 3 |
container_start_page | 517 |
container_title | Computational and Applied Mathematics |
container_volume | 33 |
creator | Mostafa, El-Sayed M. E. Tawhid, Mohamed A. Elwan, Eman R. |
description | The pole assignment problem (PAP) is a special algebraic inverse eigenvalue problem. In this paper, we present two types of algorithms, namely a quasi-Newton method with line search and some variants of the inexact Newton methods to tackle that problem. For a nonmonotone version of inexact Newton–Krylov method, we give local convergence under the assumptions of semismoothness and
B
D
-regularity at the solution and global convergence under a nonmonotonic backtracking strategy. For a quasi-Newton method with line search, under suitable assumptions, we show local Q-superlinear convergence. Also, we consider a proximal point quasi-Newton algorithm for solving PAP. Moreover, we modify these methods to tackle the PAP where the corresponding control system is with time delay. Numerical results illustrate the performance of the proposed methods. |
doi_str_mv | 10.1007/s40314-013-0078-7 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s40314_013_0078_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s40314_013_0078_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLQ_wFv-QHQmSbPpUYofhaIXxWPIbpJ-2N2sSRb137ulPTuXYV7mGYaHkBuEWwSo7rIEgZIBCjaOmlVnZIIaKgYC-DmZAAIyzWF2SaY572AsCYBcTcjHsvM_tin0xX-X2FHbOfo12Lxlp6D1ZRNdpiEmWjaexqH0Q6HBe1fb5pP2ce-pzXm77lrfFdqnWO99e00ugt1nPz31K_L--PC2eGar16fl4n7FGq51YeiEnFuslXYqcOe4DrULs7lqUEiFugoO59wpoSrpa9-gVHXwmnPLpZsFIa4IHu82KeacfDB92rY2_RoEc5BjjnLMKMcc5JhqZPiRyeNut_bJ7OKQuvHNf6A_IWNoJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem</title><source>Springer Nature</source><creator>Mostafa, El-Sayed M. E. ; Tawhid, Mohamed A. ; Elwan, Eman R.</creator><creatorcontrib>Mostafa, El-Sayed M. E. ; Tawhid, Mohamed A. ; Elwan, Eman R.</creatorcontrib><description>The pole assignment problem (PAP) is a special algebraic inverse eigenvalue problem. In this paper, we present two types of algorithms, namely a quasi-Newton method with line search and some variants of the inexact Newton methods to tackle that problem. For a nonmonotone version of inexact Newton–Krylov method, we give local convergence under the assumptions of semismoothness and
B
D
-regularity at the solution and global convergence under a nonmonotonic backtracking strategy. For a quasi-Newton method with line search, under suitable assumptions, we show local Q-superlinear convergence. Also, we consider a proximal point quasi-Newton algorithm for solving PAP. Moreover, we modify these methods to tackle the PAP where the corresponding control system is with time delay. Numerical results illustrate the performance of the proposed methods.</description><identifier>ISSN: 0101-8205</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-013-0078-7</identifier><language>eng</language><publisher>Basel: Springer Basel</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics</subject><ispartof>Computational and Applied Mathematics, 2014-10, Vol.33 (3), p.517-542</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33</citedby><cites>FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mostafa, El-Sayed M. E.</creatorcontrib><creatorcontrib>Tawhid, Mohamed A.</creatorcontrib><creatorcontrib>Elwan, Eman R.</creatorcontrib><title>Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem</title><title>Computational and Applied Mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>The pole assignment problem (PAP) is a special algebraic inverse eigenvalue problem. In this paper, we present two types of algorithms, namely a quasi-Newton method with line search and some variants of the inexact Newton methods to tackle that problem. For a nonmonotone version of inexact Newton–Krylov method, we give local convergence under the assumptions of semismoothness and
B
D
-regularity at the solution and global convergence under a nonmonotonic backtracking strategy. For a quasi-Newton method with line search, under suitable assumptions, we show local Q-superlinear convergence. Also, we consider a proximal point quasi-Newton algorithm for solving PAP. Moreover, we modify these methods to tackle the PAP where the corresponding control system is with time delay. Numerical results illustrate the performance of the proposed methods.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0101-8205</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWLQ_wFv-QHQmSbPpUYofhaIXxWPIbpJ-2N2sSRb137ulPTuXYV7mGYaHkBuEWwSo7rIEgZIBCjaOmlVnZIIaKgYC-DmZAAIyzWF2SaY572AsCYBcTcjHsvM_tin0xX-X2FHbOfo12Lxlp6D1ZRNdpiEmWjaexqH0Q6HBe1fb5pP2ce-pzXm77lrfFdqnWO99e00ugt1nPz31K_L--PC2eGar16fl4n7FGq51YeiEnFuslXYqcOe4DrULs7lqUEiFugoO59wpoSrpa9-gVHXwmnPLpZsFIa4IHu82KeacfDB92rY2_RoEc5BjjnLMKMcc5JhqZPiRyeNut_bJ7OKQuvHNf6A_IWNoJA</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Mostafa, El-Sayed M. E.</creator><creator>Tawhid, Mohamed A.</creator><creator>Elwan, Eman R.</creator><general>Springer Basel</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141001</creationdate><title>Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem</title><author>Mostafa, El-Sayed M. E. ; Tawhid, Mohamed A. ; Elwan, Eman R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mostafa, El-Sayed M. E.</creatorcontrib><creatorcontrib>Tawhid, Mohamed A.</creatorcontrib><creatorcontrib>Elwan, Eman R.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational and Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mostafa, El-Sayed M. E.</au><au>Tawhid, Mohamed A.</au><au>Elwan, Eman R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem</atitle><jtitle>Computational and Applied Mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>33</volume><issue>3</issue><spage>517</spage><epage>542</epage><pages>517-542</pages><issn>0101-8205</issn><eissn>1807-0302</eissn><abstract>The pole assignment problem (PAP) is a special algebraic inverse eigenvalue problem. In this paper, we present two types of algorithms, namely a quasi-Newton method with line search and some variants of the inexact Newton methods to tackle that problem. For a nonmonotone version of inexact Newton–Krylov method, we give local convergence under the assumptions of semismoothness and
B
D
-regularity at the solution and global convergence under a nonmonotonic backtracking strategy. For a quasi-Newton method with line search, under suitable assumptions, we show local Q-superlinear convergence. Also, we consider a proximal point quasi-Newton algorithm for solving PAP. Moreover, we modify these methods to tackle the PAP where the corresponding control system is with time delay. Numerical results illustrate the performance of the proposed methods.</abstract><cop>Basel</cop><pub>Springer Basel</pub><doi>10.1007/s40314-013-0078-7</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0101-8205 |
ispartof | Computational and Applied Mathematics, 2014-10, Vol.33 (3), p.517-542 |
issn | 0101-8205 1807-0302 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s40314_013_0078_7 |
source | Springer Nature |
subjects | Applications of Mathematics Computational Mathematics and Numerical Analysis Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics |
title | Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inexact%20Newton%20and%20quasi-Newton%20methods%20for%20the%20output%20feedback%20pole%20assignment%20problem&rft.jtitle=Computational%20and%20Applied%20Mathematics&rft.au=Mostafa,%20El-Sayed%20M.%20E.&rft.date=2014-10-01&rft.volume=33&rft.issue=3&rft.spage=517&rft.epage=542&rft.pages=517-542&rft.issn=0101-8205&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-013-0078-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s40314_013_0078_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |