Loading…

Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem

The pole assignment problem (PAP) is a special algebraic inverse eigenvalue problem. In this paper, we present two types of algorithms, namely a quasi-Newton method with line search and some variants of the inexact Newton methods to tackle that problem. For a nonmonotone version of inexact Newton–Kr...

Full description

Saved in:
Bibliographic Details
Published in:Computational and Applied Mathematics 2014-10, Vol.33 (3), p.517-542
Main Authors: Mostafa, El-Sayed M. E., Tawhid, Mohamed A., Elwan, Eman R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33
cites cdi_FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33
container_end_page 542
container_issue 3
container_start_page 517
container_title Computational and Applied Mathematics
container_volume 33
creator Mostafa, El-Sayed M. E.
Tawhid, Mohamed A.
Elwan, Eman R.
description The pole assignment problem (PAP) is a special algebraic inverse eigenvalue problem. In this paper, we present two types of algorithms, namely a quasi-Newton method with line search and some variants of the inexact Newton methods to tackle that problem. For a nonmonotone version of inexact Newton–Krylov method, we give local convergence under the assumptions of semismoothness and B D -regularity at the solution and global convergence under a nonmonotonic backtracking strategy. For a quasi-Newton method with line search, under suitable assumptions, we show local Q-superlinear convergence. Also, we consider a proximal point quasi-Newton algorithm for solving PAP. Moreover, we modify these methods to tackle the PAP where the corresponding control system is with time delay. Numerical results illustrate the performance of the proposed methods.
doi_str_mv 10.1007/s40314-013-0078-7
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s40314_013_0078_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s40314_013_0078_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWLQ_wFv-QHQmSbPpUYofhaIXxWPIbpJ-2N2sSRb137ulPTuXYV7mGYaHkBuEWwSo7rIEgZIBCjaOmlVnZIIaKgYC-DmZAAIyzWF2SaY572AsCYBcTcjHsvM_tin0xX-X2FHbOfo12Lxlp6D1ZRNdpiEmWjaexqH0Q6HBe1fb5pP2ce-pzXm77lrfFdqnWO99e00ugt1nPz31K_L--PC2eGar16fl4n7FGq51YeiEnFuslXYqcOe4DrULs7lqUEiFugoO59wpoSrpa9-gVHXwmnPLpZsFIa4IHu82KeacfDB92rY2_RoEc5BjjnLMKMcc5JhqZPiRyeNut_bJ7OKQuvHNf6A_IWNoJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem</title><source>Springer Nature</source><creator>Mostafa, El-Sayed M. E. ; Tawhid, Mohamed A. ; Elwan, Eman R.</creator><creatorcontrib>Mostafa, El-Sayed M. E. ; Tawhid, Mohamed A. ; Elwan, Eman R.</creatorcontrib><description>The pole assignment problem (PAP) is a special algebraic inverse eigenvalue problem. In this paper, we present two types of algorithms, namely a quasi-Newton method with line search and some variants of the inexact Newton methods to tackle that problem. For a nonmonotone version of inexact Newton–Krylov method, we give local convergence under the assumptions of semismoothness and B D -regularity at the solution and global convergence under a nonmonotonic backtracking strategy. For a quasi-Newton method with line search, under suitable assumptions, we show local Q-superlinear convergence. Also, we consider a proximal point quasi-Newton algorithm for solving PAP. Moreover, we modify these methods to tackle the PAP where the corresponding control system is with time delay. Numerical results illustrate the performance of the proposed methods.</description><identifier>ISSN: 0101-8205</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-013-0078-7</identifier><language>eng</language><publisher>Basel: Springer Basel</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics</subject><ispartof>Computational and Applied Mathematics, 2014-10, Vol.33 (3), p.517-542</ispartof><rights>SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33</citedby><cites>FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mostafa, El-Sayed M. E.</creatorcontrib><creatorcontrib>Tawhid, Mohamed A.</creatorcontrib><creatorcontrib>Elwan, Eman R.</creatorcontrib><title>Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem</title><title>Computational and Applied Mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>The pole assignment problem (PAP) is a special algebraic inverse eigenvalue problem. In this paper, we present two types of algorithms, namely a quasi-Newton method with line search and some variants of the inexact Newton methods to tackle that problem. For a nonmonotone version of inexact Newton–Krylov method, we give local convergence under the assumptions of semismoothness and B D -regularity at the solution and global convergence under a nonmonotonic backtracking strategy. For a quasi-Newton method with line search, under suitable assumptions, we show local Q-superlinear convergence. Also, we consider a proximal point quasi-Newton algorithm for solving PAP. Moreover, we modify these methods to tackle the PAP where the corresponding control system is with time delay. Numerical results illustrate the performance of the proposed methods.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0101-8205</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWLQ_wFv-QHQmSbPpUYofhaIXxWPIbpJ-2N2sSRb137ulPTuXYV7mGYaHkBuEWwSo7rIEgZIBCjaOmlVnZIIaKgYC-DmZAAIyzWF2SaY572AsCYBcTcjHsvM_tin0xX-X2FHbOfo12Lxlp6D1ZRNdpiEmWjaexqH0Q6HBe1fb5pP2ce-pzXm77lrfFdqnWO99e00ugt1nPz31K_L--PC2eGar16fl4n7FGq51YeiEnFuslXYqcOe4DrULs7lqUEiFugoO59wpoSrpa9-gVHXwmnPLpZsFIa4IHu82KeacfDB92rY2_RoEc5BjjnLMKMcc5JhqZPiRyeNut_bJ7OKQuvHNf6A_IWNoJA</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Mostafa, El-Sayed M. E.</creator><creator>Tawhid, Mohamed A.</creator><creator>Elwan, Eman R.</creator><general>Springer Basel</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20141001</creationdate><title>Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem</title><author>Mostafa, El-Sayed M. E. ; Tawhid, Mohamed A. ; Elwan, Eman R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mostafa, El-Sayed M. E.</creatorcontrib><creatorcontrib>Tawhid, Mohamed A.</creatorcontrib><creatorcontrib>Elwan, Eman R.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational and Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mostafa, El-Sayed M. E.</au><au>Tawhid, Mohamed A.</au><au>Elwan, Eman R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem</atitle><jtitle>Computational and Applied Mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2014-10-01</date><risdate>2014</risdate><volume>33</volume><issue>3</issue><spage>517</spage><epage>542</epage><pages>517-542</pages><issn>0101-8205</issn><eissn>1807-0302</eissn><abstract>The pole assignment problem (PAP) is a special algebraic inverse eigenvalue problem. In this paper, we present two types of algorithms, namely a quasi-Newton method with line search and some variants of the inexact Newton methods to tackle that problem. For a nonmonotone version of inexact Newton–Krylov method, we give local convergence under the assumptions of semismoothness and B D -regularity at the solution and global convergence under a nonmonotonic backtracking strategy. For a quasi-Newton method with line search, under suitable assumptions, we show local Q-superlinear convergence. Also, we consider a proximal point quasi-Newton algorithm for solving PAP. Moreover, we modify these methods to tackle the PAP where the corresponding control system is with time delay. Numerical results illustrate the performance of the proposed methods.</abstract><cop>Basel</cop><pub>Springer Basel</pub><doi>10.1007/s40314-013-0078-7</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0101-8205
ispartof Computational and Applied Mathematics, 2014-10, Vol.33 (3), p.517-542
issn 0101-8205
1807-0302
language eng
recordid cdi_crossref_primary_10_1007_s40314_013_0078_7
source Springer Nature
subjects Applications of Mathematics
Computational Mathematics and Numerical Analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
title Inexact Newton and quasi-Newton methods for the output feedback pole assignment problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inexact%20Newton%20and%20quasi-Newton%20methods%20for%20the%20output%20feedback%20pole%20assignment%20problem&rft.jtitle=Computational%20and%20Applied%20Mathematics&rft.au=Mostafa,%20El-Sayed%20M.%20E.&rft.date=2014-10-01&rft.volume=33&rft.issue=3&rft.spage=517&rft.epage=542&rft.pages=517-542&rft.issn=0101-8205&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-013-0078-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s40314_013_0078_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-1d349a1b68d6f2dd28fbdf596c1346187fd192d63674ebec146bfe822a24d5f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true