Loading…

Convergence of a refined iterative method and its application to fractional Volterra–Fredholm integro-differential equations

Our research introduces an innovative iterative method for approximating fixed points of contraction mappings in uniformly convex Banach spaces. To validate the stability of this iterative process, we provide a comprehensive theorem. Through detailed examples and graphical analysis, we demonstrate t...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2025-02, Vol.44 (1), Article 2
Main Authors: Alam, Khairul Habib, Rohen, Yumnam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c172t-f7fe1dc5733787b052dce6520f84519400ae67799eea350a03e8d34aa8295f4c3
container_end_page
container_issue 1
container_start_page
container_title Computational & applied mathematics
container_volume 44
creator Alam, Khairul Habib
Rohen, Yumnam
description Our research introduces an innovative iterative method for approximating fixed points of contraction mappings in uniformly convex Banach spaces. To validate the stability of this iterative process, we provide a comprehensive theorem. Through detailed examples and graphical analysis, we demonstrate that our method outperforms previous approaches for contraction mappings, including those developed by Agarwal, Gursoy, Thakur, Ali, and D ∗ ∗ , using MATLAB software for implementation and comparison. Moreover, we investigate the effect of various parameters on the convergence behavior of our proposed method. By comparing it with existing iterative schemes through a specific example, we highlight the efficiency and robustness of our approach. Additionally, we establish a significant result concerning data dependence for an approximate operator, utilizing our iterative process to show how small changes in data can affect the outcome. Finally, we apply our fundamental findings to a practical problem by estimating solutions for a fractional Volterra-Fredholm integro-differential equation. This application not only illustrates the practical utility of our method but also underscores its potential for solving complex problems in applied mathematics.
doi_str_mv 10.1007/s40314-024-02964-4
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s40314_024_02964_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s40314_024_02964_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-f7fe1dc5733787b052dce6520f84519400ae67799eea350a03e8d34aa8295f4c3</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEuXnAqx8gcD4J3GyRBUFpEpsgK1lknHrKrWLnVZig7gDN-QkOC1rFqMZzbxvpPcIuWJwzQDUTZIgmCyAj9VUspBHZMJqUAUI4MdkwrmoC1GBOCVnKa0AhGJSTsjnNPgdxgX6Fmmw1NCI1nnsqBswmsHtkK5xWIaOGj8uEzWbTe_afAqeDoHaaNpxNj19DX2Govn5-p5F7JahX1PnB1zEUHTOWozoB5eF-L7d8-mCnFjTJ7z86-fkZXb3PH0o5k_3j9PbedEyxYfCKousa0slhKrVG5S8a7EqOdhalqyRAAYrpZoG0YgSDAisOyGNqXlTWtmKc8IPf9sYUsoW9Sa6tYkfmoEeE9SHBHVOUO8T1DJD4gClLPYLjHoVtjEbTf9Rv8y8d-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence of a refined iterative method and its application to fractional Volterra–Fredholm integro-differential equations</title><source>Springer Nature</source><creator>Alam, Khairul Habib ; Rohen, Yumnam</creator><creatorcontrib>Alam, Khairul Habib ; Rohen, Yumnam</creatorcontrib><description>Our research introduces an innovative iterative method for approximating fixed points of contraction mappings in uniformly convex Banach spaces. To validate the stability of this iterative process, we provide a comprehensive theorem. Through detailed examples and graphical analysis, we demonstrate that our method outperforms previous approaches for contraction mappings, including those developed by Agarwal, Gursoy, Thakur, Ali, and D ∗ ∗ , using MATLAB software for implementation and comparison. Moreover, we investigate the effect of various parameters on the convergence behavior of our proposed method. By comparing it with existing iterative schemes through a specific example, we highlight the efficiency and robustness of our approach. Additionally, we establish a significant result concerning data dependence for an approximate operator, utilizing our iterative process to show how small changes in data can affect the outcome. Finally, we apply our fundamental findings to a practical problem by estimating solutions for a fractional Volterra-Fredholm integro-differential equation. This application not only illustrates the practical utility of our method but also underscores its potential for solving complex problems in applied mathematics.</description><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-024-02964-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics</subject><ispartof>Computational &amp; applied mathematics, 2025-02, Vol.44 (1), Article 2</ispartof><rights>The Author(s) under exclusive licence to Sociedade Brasileira de Matemática Aplicada e Computacional 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c172t-f7fe1dc5733787b052dce6520f84519400ae67799eea350a03e8d34aa8295f4c3</cites><orcidid>0000-0001-9565-4223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Alam, Khairul Habib</creatorcontrib><creatorcontrib>Rohen, Yumnam</creatorcontrib><title>Convergence of a refined iterative method and its application to fractional Volterra–Fredholm integro-differential equations</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>Our research introduces an innovative iterative method for approximating fixed points of contraction mappings in uniformly convex Banach spaces. To validate the stability of this iterative process, we provide a comprehensive theorem. Through detailed examples and graphical analysis, we demonstrate that our method outperforms previous approaches for contraction mappings, including those developed by Agarwal, Gursoy, Thakur, Ali, and D ∗ ∗ , using MATLAB software for implementation and comparison. Moreover, we investigate the effect of various parameters on the convergence behavior of our proposed method. By comparing it with existing iterative schemes through a specific example, we highlight the efficiency and robustness of our approach. Additionally, we establish a significant result concerning data dependence for an approximate operator, utilizing our iterative process to show how small changes in data can affect the outcome. Finally, we apply our fundamental findings to a practical problem by estimating solutions for a fractional Volterra-Fredholm integro-differential equation. This application not only illustrates the practical utility of our method but also underscores its potential for solving complex problems in applied mathematics.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEuXnAqx8gcD4J3GyRBUFpEpsgK1lknHrKrWLnVZig7gDN-QkOC1rFqMZzbxvpPcIuWJwzQDUTZIgmCyAj9VUspBHZMJqUAUI4MdkwrmoC1GBOCVnKa0AhGJSTsjnNPgdxgX6Fmmw1NCI1nnsqBswmsHtkK5xWIaOGj8uEzWbTe_afAqeDoHaaNpxNj19DX2Govn5-p5F7JahX1PnB1zEUHTOWozoB5eF-L7d8-mCnFjTJ7z86-fkZXb3PH0o5k_3j9PbedEyxYfCKousa0slhKrVG5S8a7EqOdhalqyRAAYrpZoG0YgSDAisOyGNqXlTWtmKc8IPf9sYUsoW9Sa6tYkfmoEeE9SHBHVOUO8T1DJD4gClLPYLjHoVtjEbTf9Rv8y8d-0</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Alam, Khairul Habib</creator><creator>Rohen, Yumnam</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9565-4223</orcidid></search><sort><creationdate>20250201</creationdate><title>Convergence of a refined iterative method and its application to fractional Volterra–Fredholm integro-differential equations</title><author>Alam, Khairul Habib ; Rohen, Yumnam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-f7fe1dc5733787b052dce6520f84519400ae67799eea350a03e8d34aa8295f4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Khairul Habib</creatorcontrib><creatorcontrib>Rohen, Yumnam</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Khairul Habib</au><au>Rohen, Yumnam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of a refined iterative method and its application to fractional Volterra–Fredholm integro-differential equations</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>44</volume><issue>1</issue><artnum>2</artnum><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>Our research introduces an innovative iterative method for approximating fixed points of contraction mappings in uniformly convex Banach spaces. To validate the stability of this iterative process, we provide a comprehensive theorem. Through detailed examples and graphical analysis, we demonstrate that our method outperforms previous approaches for contraction mappings, including those developed by Agarwal, Gursoy, Thakur, Ali, and D ∗ ∗ , using MATLAB software for implementation and comparison. Moreover, we investigate the effect of various parameters on the convergence behavior of our proposed method. By comparing it with existing iterative schemes through a specific example, we highlight the efficiency and robustness of our approach. Additionally, we establish a significant result concerning data dependence for an approximate operator, utilizing our iterative process to show how small changes in data can affect the outcome. Finally, we apply our fundamental findings to a practical problem by estimating solutions for a fractional Volterra-Fredholm integro-differential equation. This application not only illustrates the practical utility of our method but also underscores its potential for solving complex problems in applied mathematics.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-024-02964-4</doi><orcidid>https://orcid.org/0000-0001-9565-4223</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2238-3603
ispartof Computational & applied mathematics, 2025-02, Vol.44 (1), Article 2
issn 2238-3603
1807-0302
language eng
recordid cdi_crossref_primary_10_1007_s40314_024_02964_4
source Springer Nature
subjects Applications of Mathematics
Computational Mathematics and Numerical Analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
title Convergence of a refined iterative method and its application to fractional Volterra–Fredholm integro-differential equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20a%20refined%20iterative%20method%20and%20its%20application%20to%20fractional%20Volterra%E2%80%93Fredholm%20integro-differential%20equations&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Alam,%20Khairul%20Habib&rft.date=2025-02-01&rft.volume=44&rft.issue=1&rft.artnum=2&rft.issn=2238-3603&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-024-02964-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s40314_024_02964_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172t-f7fe1dc5733787b052dce6520f84519400ae67799eea350a03e8d34aa8295f4c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true