Loading…

Fast multiple rank-constrained matrix approximation

Our work addresses methods for a fast multiterm matrix approximation subject to multiple rank constraints. The problem arises in applications associated with data processing systems. For large matrices, finding acceptable matrix approximations may require a quite long time. In practice, this issue m...

Full description

Saved in:
Bibliographic Details
Published in:SeMA journal 2024-12, Vol.81 (4), p.641-663
Main Authors: Soto-Quiros, Pablo, Chavarría-Molina, Jeffry, Fallas-Monge, Juan José, Torokhti, Anatoli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1576-8bc85279b3bc37920d14c665de29e448f8ab09cd68e9f1b83d0054831fa69733
container_end_page 663
container_issue 4
container_start_page 641
container_title SeMA journal
container_volume 81
creator Soto-Quiros, Pablo
Chavarría-Molina, Jeffry
Fallas-Monge, Juan José
Torokhti, Anatoli
description Our work addresses methods for a fast multiterm matrix approximation subject to multiple rank constraints. The problem arises in applications associated with data processing systems. For large matrices, finding acceptable matrix approximations may require a quite long time. In practice, this issue may fail associated computation due to a conflict with an available time and computer memory. We provide techniques that allow us to accelerate the associated computation and avoid the above bottleneck. The proposed approach combines a fast pseudoinverse matrix computation, based on the use of a vector tensor product, with a fast low-rank matrix approximation, based on a new extension of a method of bilateral random projections. The provided theoretical and numerical studies demonstrate the faster performance of the proposed method compared to methods based on the SVD computation. It is achieved, in particular, in the cost of ‘a little bit’ worse associated numerical error which, in many practical cases, might be acceptable.
doi_str_mv 10.1007/s40324-023-00340-6
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s40324_023_00340_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s40324_023_00340_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1576-8bc85279b3bc37920d14c665de29e448f8ab09cd68e9f1b83d0054831fa69733</originalsourceid><addsrcrecordid>eNp9j01LAzEQhoMoWGr_gKf9A9HJx-bjKMWqUPDSe0iyWYlus0uyhfrvTV3PnmYG5pl5H4TuCTwQAPlYODDKMVCGARgHLK7QilJFsFSyvb70LcdMA71Fm1KiA6pVS4GSFWI7W-bmeBrmOA2hyTZ9YT-mMmcbU-iao51zPDd2mvJ4jnWKY7pDN70dStj81TU67J4P21e8f3952z7tsSetFFg5X79I7ZjzTGoKHeFeiLYLVAfOVa-sA-07oYLuiVOsA2i5YqS3QkvG1oguZ30eS8mhN1OuCfK3IWAu4mYRN1Xc_IobUSG2QKUup4-Qzed4yqnG_I_6Aa0LWu0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast multiple rank-constrained matrix approximation</title><source>Springer Nature</source><creator>Soto-Quiros, Pablo ; Chavarría-Molina, Jeffry ; Fallas-Monge, Juan José ; Torokhti, Anatoli</creator><creatorcontrib>Soto-Quiros, Pablo ; Chavarría-Molina, Jeffry ; Fallas-Monge, Juan José ; Torokhti, Anatoli</creatorcontrib><description>Our work addresses methods for a fast multiterm matrix approximation subject to multiple rank constraints. The problem arises in applications associated with data processing systems. For large matrices, finding acceptable matrix approximations may require a quite long time. In practice, this issue may fail associated computation due to a conflict with an available time and computer memory. We provide techniques that allow us to accelerate the associated computation and avoid the above bottleneck. The proposed approach combines a fast pseudoinverse matrix computation, based on the use of a vector tensor product, with a fast low-rank matrix approximation, based on a new extension of a method of bilateral random projections. The provided theoretical and numerical studies demonstrate the faster performance of the proposed method compared to methods based on the SVD computation. It is achieved, in particular, in the cost of ‘a little bit’ worse associated numerical error which, in many practical cases, might be acceptable.</description><identifier>ISSN: 2254-3902</identifier><identifier>EISSN: 2281-7875</identifier><identifier>DOI: 10.1007/s40324-023-00340-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Mathematics ; Mathematics and Statistics</subject><ispartof>SeMA journal, 2024-12, Vol.81 (4), p.641-663</ispartof><rights>The Author(s), under exclusive licence to Sociedad Española de Matemática Aplicada 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1576-8bc85279b3bc37920d14c665de29e448f8ab09cd68e9f1b83d0054831fa69733</cites><orcidid>0000-0003-2903-3116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soto-Quiros, Pablo</creatorcontrib><creatorcontrib>Chavarría-Molina, Jeffry</creatorcontrib><creatorcontrib>Fallas-Monge, Juan José</creatorcontrib><creatorcontrib>Torokhti, Anatoli</creatorcontrib><title>Fast multiple rank-constrained matrix approximation</title><title>SeMA journal</title><addtitle>SeMA</addtitle><description>Our work addresses methods for a fast multiterm matrix approximation subject to multiple rank constraints. The problem arises in applications associated with data processing systems. For large matrices, finding acceptable matrix approximations may require a quite long time. In practice, this issue may fail associated computation due to a conflict with an available time and computer memory. We provide techniques that allow us to accelerate the associated computation and avoid the above bottleneck. The proposed approach combines a fast pseudoinverse matrix computation, based on the use of a vector tensor product, with a fast low-rank matrix approximation, based on a new extension of a method of bilateral random projections. The provided theoretical and numerical studies demonstrate the faster performance of the proposed method compared to methods based on the SVD computation. It is achieved, in particular, in the cost of ‘a little bit’ worse associated numerical error which, in many practical cases, might be acceptable.</description><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>2254-3902</issn><issn>2281-7875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEQhoMoWGr_gKf9A9HJx-bjKMWqUPDSe0iyWYlus0uyhfrvTV3PnmYG5pl5H4TuCTwQAPlYODDKMVCGARgHLK7QilJFsFSyvb70LcdMA71Fm1KiA6pVS4GSFWI7W-bmeBrmOA2hyTZ9YT-mMmcbU-iao51zPDd2mvJ4jnWKY7pDN70dStj81TU67J4P21e8f3952z7tsSetFFg5X79I7ZjzTGoKHeFeiLYLVAfOVa-sA-07oYLuiVOsA2i5YqS3QkvG1oguZ30eS8mhN1OuCfK3IWAu4mYRN1Xc_IobUSG2QKUup4-Qzed4yqnG_I_6Aa0LWu0</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Soto-Quiros, Pablo</creator><creator>Chavarría-Molina, Jeffry</creator><creator>Fallas-Monge, Juan José</creator><creator>Torokhti, Anatoli</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2903-3116</orcidid></search><sort><creationdate>202412</creationdate><title>Fast multiple rank-constrained matrix approximation</title><author>Soto-Quiros, Pablo ; Chavarría-Molina, Jeffry ; Fallas-Monge, Juan José ; Torokhti, Anatoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1576-8bc85279b3bc37920d14c665de29e448f8ab09cd68e9f1b83d0054831fa69733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soto-Quiros, Pablo</creatorcontrib><creatorcontrib>Chavarría-Molina, Jeffry</creatorcontrib><creatorcontrib>Fallas-Monge, Juan José</creatorcontrib><creatorcontrib>Torokhti, Anatoli</creatorcontrib><collection>CrossRef</collection><jtitle>SeMA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soto-Quiros, Pablo</au><au>Chavarría-Molina, Jeffry</au><au>Fallas-Monge, Juan José</au><au>Torokhti, Anatoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast multiple rank-constrained matrix approximation</atitle><jtitle>SeMA journal</jtitle><stitle>SeMA</stitle><date>2024-12</date><risdate>2024</risdate><volume>81</volume><issue>4</issue><spage>641</spage><epage>663</epage><pages>641-663</pages><issn>2254-3902</issn><eissn>2281-7875</eissn><abstract>Our work addresses methods for a fast multiterm matrix approximation subject to multiple rank constraints. The problem arises in applications associated with data processing systems. For large matrices, finding acceptable matrix approximations may require a quite long time. In practice, this issue may fail associated computation due to a conflict with an available time and computer memory. We provide techniques that allow us to accelerate the associated computation and avoid the above bottleneck. The proposed approach combines a fast pseudoinverse matrix computation, based on the use of a vector tensor product, with a fast low-rank matrix approximation, based on a new extension of a method of bilateral random projections. The provided theoretical and numerical studies demonstrate the faster performance of the proposed method compared to methods based on the SVD computation. It is achieved, in particular, in the cost of ‘a little bit’ worse associated numerical error which, in many practical cases, might be acceptable.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40324-023-00340-6</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2903-3116</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2254-3902
ispartof SeMA journal, 2024-12, Vol.81 (4), p.641-663
issn 2254-3902
2281-7875
language eng
recordid cdi_crossref_primary_10_1007_s40324_023_00340_6
source Springer Nature
subjects Applications of Mathematics
Mathematics
Mathematics and Statistics
title Fast multiple rank-constrained matrix approximation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20multiple%20rank-constrained%20matrix%20approximation&rft.jtitle=SeMA%20journal&rft.au=Soto-Quiros,%20Pablo&rft.date=2024-12&rft.volume=81&rft.issue=4&rft.spage=641&rft.epage=663&rft.pages=641-663&rft.issn=2254-3902&rft.eissn=2281-7875&rft_id=info:doi/10.1007/s40324-023-00340-6&rft_dat=%3Ccrossref_sprin%3E10_1007_s40324_023_00340_6%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1576-8bc85279b3bc37920d14c665de29e448f8ab09cd68e9f1b83d0054831fa69733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true