Loading…
Fast multiple rank-constrained matrix approximation
Our work addresses methods for a fast multiterm matrix approximation subject to multiple rank constraints. The problem arises in applications associated with data processing systems. For large matrices, finding acceptable matrix approximations may require a quite long time. In practice, this issue m...
Saved in:
Published in: | SeMA journal 2024-12, Vol.81 (4), p.641-663 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1576-8bc85279b3bc37920d14c665de29e448f8ab09cd68e9f1b83d0054831fa69733 |
container_end_page | 663 |
container_issue | 4 |
container_start_page | 641 |
container_title | SeMA journal |
container_volume | 81 |
creator | Soto-Quiros, Pablo Chavarría-Molina, Jeffry Fallas-Monge, Juan José Torokhti, Anatoli |
description | Our work addresses methods for a fast multiterm matrix approximation subject to multiple rank constraints. The problem arises in applications associated with data processing systems. For large matrices, finding acceptable matrix approximations may require a quite long time. In practice, this issue may fail associated computation due to a conflict with an available time and computer memory. We provide techniques that allow us to accelerate the associated computation and avoid the above bottleneck. The proposed approach combines a fast pseudoinverse matrix computation, based on the use of a vector tensor product, with a fast low-rank matrix approximation, based on a new extension of a method of bilateral random projections. The provided theoretical and numerical studies demonstrate the faster performance of the proposed method compared to methods based on the SVD computation. It is achieved, in particular, in the cost of ‘a little bit’ worse associated numerical error which, in many practical cases, might be acceptable. |
doi_str_mv | 10.1007/s40324-023-00340-6 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s40324_023_00340_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s40324_023_00340_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1576-8bc85279b3bc37920d14c665de29e448f8ab09cd68e9f1b83d0054831fa69733</originalsourceid><addsrcrecordid>eNp9j01LAzEQhoMoWGr_gKf9A9HJx-bjKMWqUPDSe0iyWYlus0uyhfrvTV3PnmYG5pl5H4TuCTwQAPlYODDKMVCGARgHLK7QilJFsFSyvb70LcdMA71Fm1KiA6pVS4GSFWI7W-bmeBrmOA2hyTZ9YT-mMmcbU-iao51zPDd2mvJ4jnWKY7pDN70dStj81TU67J4P21e8f3952z7tsSetFFg5X79I7ZjzTGoKHeFeiLYLVAfOVa-sA-07oYLuiVOsA2i5YqS3QkvG1oguZ30eS8mhN1OuCfK3IWAu4mYRN1Xc_IobUSG2QKUup4-Qzed4yqnG_I_6Aa0LWu0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast multiple rank-constrained matrix approximation</title><source>Springer Nature</source><creator>Soto-Quiros, Pablo ; Chavarría-Molina, Jeffry ; Fallas-Monge, Juan José ; Torokhti, Anatoli</creator><creatorcontrib>Soto-Quiros, Pablo ; Chavarría-Molina, Jeffry ; Fallas-Monge, Juan José ; Torokhti, Anatoli</creatorcontrib><description>Our work addresses methods for a fast multiterm matrix approximation subject to multiple rank constraints. The problem arises in applications associated with data processing systems. For large matrices, finding acceptable matrix approximations may require a quite long time. In practice, this issue may fail associated computation due to a conflict with an available time and computer memory. We provide techniques that allow us to accelerate the associated computation and avoid the above bottleneck. The proposed approach combines a fast pseudoinverse matrix computation, based on the use of a vector tensor product, with a fast low-rank matrix approximation, based on a new extension of a method of bilateral random projections. The provided theoretical and numerical studies demonstrate the faster performance of the proposed method compared to methods based on the SVD computation. It is achieved, in particular, in the cost of ‘a little bit’ worse associated numerical error which, in many practical cases, might be acceptable.</description><identifier>ISSN: 2254-3902</identifier><identifier>EISSN: 2281-7875</identifier><identifier>DOI: 10.1007/s40324-023-00340-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Mathematics ; Mathematics and Statistics</subject><ispartof>SeMA journal, 2024-12, Vol.81 (4), p.641-663</ispartof><rights>The Author(s), under exclusive licence to Sociedad Española de Matemática Aplicada 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1576-8bc85279b3bc37920d14c665de29e448f8ab09cd68e9f1b83d0054831fa69733</cites><orcidid>0000-0003-2903-3116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soto-Quiros, Pablo</creatorcontrib><creatorcontrib>Chavarría-Molina, Jeffry</creatorcontrib><creatorcontrib>Fallas-Monge, Juan José</creatorcontrib><creatorcontrib>Torokhti, Anatoli</creatorcontrib><title>Fast multiple rank-constrained matrix approximation</title><title>SeMA journal</title><addtitle>SeMA</addtitle><description>Our work addresses methods for a fast multiterm matrix approximation subject to multiple rank constraints. The problem arises in applications associated with data processing systems. For large matrices, finding acceptable matrix approximations may require a quite long time. In practice, this issue may fail associated computation due to a conflict with an available time and computer memory. We provide techniques that allow us to accelerate the associated computation and avoid the above bottleneck. The proposed approach combines a fast pseudoinverse matrix computation, based on the use of a vector tensor product, with a fast low-rank matrix approximation, based on a new extension of a method of bilateral random projections. The provided theoretical and numerical studies demonstrate the faster performance of the proposed method compared to methods based on the SVD computation. It is achieved, in particular, in the cost of ‘a little bit’ worse associated numerical error which, in many practical cases, might be acceptable.</description><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>2254-3902</issn><issn>2281-7875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j01LAzEQhoMoWGr_gKf9A9HJx-bjKMWqUPDSe0iyWYlus0uyhfrvTV3PnmYG5pl5H4TuCTwQAPlYODDKMVCGARgHLK7QilJFsFSyvb70LcdMA71Fm1KiA6pVS4GSFWI7W-bmeBrmOA2hyTZ9YT-mMmcbU-iao51zPDd2mvJ4jnWKY7pDN70dStj81TU67J4P21e8f3952z7tsSetFFg5X79I7ZjzTGoKHeFeiLYLVAfOVa-sA-07oYLuiVOsA2i5YqS3QkvG1oguZ30eS8mhN1OuCfK3IWAu4mYRN1Xc_IobUSG2QKUup4-Qzed4yqnG_I_6Aa0LWu0</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Soto-Quiros, Pablo</creator><creator>Chavarría-Molina, Jeffry</creator><creator>Fallas-Monge, Juan José</creator><creator>Torokhti, Anatoli</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2903-3116</orcidid></search><sort><creationdate>202412</creationdate><title>Fast multiple rank-constrained matrix approximation</title><author>Soto-Quiros, Pablo ; Chavarría-Molina, Jeffry ; Fallas-Monge, Juan José ; Torokhti, Anatoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1576-8bc85279b3bc37920d14c665de29e448f8ab09cd68e9f1b83d0054831fa69733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soto-Quiros, Pablo</creatorcontrib><creatorcontrib>Chavarría-Molina, Jeffry</creatorcontrib><creatorcontrib>Fallas-Monge, Juan José</creatorcontrib><creatorcontrib>Torokhti, Anatoli</creatorcontrib><collection>CrossRef</collection><jtitle>SeMA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soto-Quiros, Pablo</au><au>Chavarría-Molina, Jeffry</au><au>Fallas-Monge, Juan José</au><au>Torokhti, Anatoli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast multiple rank-constrained matrix approximation</atitle><jtitle>SeMA journal</jtitle><stitle>SeMA</stitle><date>2024-12</date><risdate>2024</risdate><volume>81</volume><issue>4</issue><spage>641</spage><epage>663</epage><pages>641-663</pages><issn>2254-3902</issn><eissn>2281-7875</eissn><abstract>Our work addresses methods for a fast multiterm matrix approximation subject to multiple rank constraints. The problem arises in applications associated with data processing systems. For large matrices, finding acceptable matrix approximations may require a quite long time. In practice, this issue may fail associated computation due to a conflict with an available time and computer memory. We provide techniques that allow us to accelerate the associated computation and avoid the above bottleneck. The proposed approach combines a fast pseudoinverse matrix computation, based on the use of a vector tensor product, with a fast low-rank matrix approximation, based on a new extension of a method of bilateral random projections. The provided theoretical and numerical studies demonstrate the faster performance of the proposed method compared to methods based on the SVD computation. It is achieved, in particular, in the cost of ‘a little bit’ worse associated numerical error which, in many practical cases, might be acceptable.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40324-023-00340-6</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2903-3116</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2254-3902 |
ispartof | SeMA journal, 2024-12, Vol.81 (4), p.641-663 |
issn | 2254-3902 2281-7875 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s40324_023_00340_6 |
source | Springer Nature |
subjects | Applications of Mathematics Mathematics Mathematics and Statistics |
title | Fast multiple rank-constrained matrix approximation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20multiple%20rank-constrained%20matrix%20approximation&rft.jtitle=SeMA%20journal&rft.au=Soto-Quiros,%20Pablo&rft.date=2024-12&rft.volume=81&rft.issue=4&rft.spage=641&rft.epage=663&rft.pages=641-663&rft.issn=2254-3902&rft.eissn=2281-7875&rft_id=info:doi/10.1007/s40324-023-00340-6&rft_dat=%3Ccrossref_sprin%3E10_1007_s40324_023_00340_6%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1576-8bc85279b3bc37920d14c665de29e448f8ab09cd68e9f1b83d0054831fa69733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |