Loadingā€¦

A novel method to identify topological domains using Hi-C data

Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analy...

Full description

Saved in:
Bibliographic Details
Published in:Quantitative biology 2015-08, Vol.3 (2), p.81-89
Main Authors: Wang, Yang, Li, Yanjian, Gao, Juntao, Zhang, Michael Q.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3
cites cdi_FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3
container_end_page 89
container_issue 2
container_start_page 81
container_title Quantitative biology
container_volume 3
creator Wang, Yang
Li, Yanjian
Gao, Juntao
Zhang, Michael Q.
description Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data. Here we present a new method called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially able to discover more hints and clues about chromatin structural elements at domain level.
doi_str_mv 10.1007/s40484-015-0047-9
format article
fullrecord <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s40484_015_0047_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>QUB2BF00044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3</originalsourceid><addsrcrecordid>eNqFkM1KAzEURoMoWGofwF1eIJrJZGYSF0Jb1AoFEew6pMnNNDKdlKRV-vamjLisq_vdxbk_B6Hbgt4VlDb3iVMuOKFFRSjlDZEXaMSorAivZXP5l4W8RpOU_JpyTgVnjI7Q4xT34Qs6vIX9Jli8D9hb6PfeHXPehS603ugO27DVvk_4kHzf4oUnc2z1Xt-gK6e7BJPfOkar56eP-YIs315e59MlMSWvOWlM4xzTIDWjUJRGVto640wjrattaaCAQjAHZZUPM1LUomKm0qVZa1qvhS3HqBjmmhhSiuDULvqtjkdVUHVyoAYHKjtQJwdKZuZhYL59B8f_AfW-mrHZM80dzzAb4JS5voWoPsMh9vnHsxvFAG18u4EIdhchJeViyEIhnkN_AFwDgkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel method to identify topological domains using Hi-C data</title><source>Wiley Open Access</source><creator>Wang, Yang ; Li, Yanjian ; Gao, Juntao ; Zhang, Michael Q.</creator><creatorcontrib>Wang, Yang ; Li, Yanjian ; Gao, Juntao ; Zhang, Michael Q.</creatorcontrib><description>Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data. Here we present a new method called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially able to discover more hints and clues about chromatin structural elements at domain level.</description><identifier>ISSN: 2095-4689</identifier><identifier>EISSN: 2095-4697</identifier><identifier>DOI: 10.1007/s40484-015-0047-9</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Bioinformatics ; Biomedical and Life Sciences ; chromatin domain ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; dynamic programming ; Hi-C ; Life Sciences ; Mathematical and Computational Biology ; Research Article</subject><ispartof>Quantitative biology, 2015-08, Vol.3 (2), p.81-89</ispartof><rights>Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag GmbH 2015</rights><rights>The Author(s) 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3</citedby><cites>FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1007%2Fs40484-015-0047-9$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1007%2Fs40484-015-0047-9$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11541,27901,27902,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs40484-015-0047-9$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Yanjian</creatorcontrib><creatorcontrib>Gao, Juntao</creatorcontrib><creatorcontrib>Zhang, Michael Q.</creatorcontrib><title>A novel method to identify topological domains using Hi-C data</title><title>Quantitative biology</title><addtitle>Quant. Biol</addtitle><addtitle>Quant Biol</addtitle><description>Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data. Here we present a new method called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially able to discover more hints and clues about chromatin structural elements at domain level.</description><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>chromatin domain</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>dynamic programming</subject><subject>Hi-C</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Research Article</subject><issn>2095-4689</issn><issn>2095-4697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURoMoWGofwF1eIJrJZGYSF0Jb1AoFEew6pMnNNDKdlKRV-vamjLisq_vdxbk_B6Hbgt4VlDb3iVMuOKFFRSjlDZEXaMSorAivZXP5l4W8RpOU_JpyTgVnjI7Q4xT34Qs6vIX9Jli8D9hb6PfeHXPehS603ugO27DVvk_4kHzf4oUnc2z1Xt-gK6e7BJPfOkar56eP-YIs315e59MlMSWvOWlM4xzTIDWjUJRGVto640wjrattaaCAQjAHZZUPM1LUomKm0qVZa1qvhS3HqBjmmhhSiuDULvqtjkdVUHVyoAYHKjtQJwdKZuZhYL59B8f_AfW-mrHZM80dzzAb4JS5voWoPsMh9vnHsxvFAG18u4EIdhchJeViyEIhnkN_AFwDgkY</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Wang, Yang</creator><creator>Li, Yanjian</creator><creator>Gao, Juntao</creator><creator>Zhang, Michael Q.</creator><general>Higher Education Press</general><general>Higher Education Press and Springerā€Verlag Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201508</creationdate><title>A novel method to identify topological domains using Hi-C data</title><author>Wang, Yang ; Li, Yanjian ; Gao, Juntao ; Zhang, Michael Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>chromatin domain</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>dynamic programming</topic><topic>Hi-C</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Yanjian</creatorcontrib><creatorcontrib>Gao, Juntao</creatorcontrib><creatorcontrib>Zhang, Michael Q.</creatorcontrib><collection>CrossRef</collection><jtitle>Quantitative biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yang</au><au>Li, Yanjian</au><au>Gao, Juntao</au><au>Zhang, Michael Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel method to identify topological domains using Hi-C data</atitle><jtitle>Quantitative biology</jtitle><stitle>Quant. Biol</stitle><stitle>Quant Biol</stitle><date>2015-08</date><risdate>2015</risdate><volume>3</volume><issue>2</issue><spage>81</spage><epage>89</epage><pages>81-89</pages><issn>2095-4689</issn><eissn>2095-4697</eissn><abstract>Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data. Here we present a new method called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially able to discover more hints and clues about chromatin structural elements at domain level.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s40484-015-0047-9</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2095-4689
ispartof Quantitative biology, 2015-08, Vol.3 (2), p.81-89
issn 2095-4689
2095-4697
language eng
recordid cdi_crossref_primary_10_1007_s40484_015_0047_9
source Wiley Open Access
subjects Bioinformatics
Biomedical and Life Sciences
chromatin domain
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
dynamic programming
Hi-C
Life Sciences
Mathematical and Computational Biology
Research Article
title A novel method to identify topological domains using Hi-C data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20method%20to%20identify%20topological%20domains%20using%20Hi-C%20data&rft.jtitle=Quantitative%20biology&rft.au=Wang,%20Yang&rft.date=2015-08&rft.volume=3&rft.issue=2&rft.spage=81&rft.epage=89&rft.pages=81-89&rft.issn=2095-4689&rft.eissn=2095-4697&rft_id=info:doi/10.1007/s40484-015-0047-9&rft_dat=%3Cwiley_24P%3EQUB2BF00044%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true