Loadingā¦
A novel method to identify topological domains using Hi-C data
Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analy...
Saved in:
Published in: | Quantitative biology 2015-08, Vol.3 (2), p.81-89 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3 |
container_end_page | 89 |
container_issue | 2 |
container_start_page | 81 |
container_title | Quantitative biology |
container_volume | 3 |
creator | Wang, Yang Li, Yanjian Gao, Juntao Zhang, Michael Q. |
description | Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data. Here we present a new method called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially able to discover more hints and clues about chromatin structural elements at domain level. |
doi_str_mv | 10.1007/s40484-015-0047-9 |
format | article |
fullrecord | <record><control><sourceid>wiley_24P</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s40484_015_0047_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>QUB2BF00044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3</originalsourceid><addsrcrecordid>eNqFkM1KAzEURoMoWGofwF1eIJrJZGYSF0Jb1AoFEew6pMnNNDKdlKRV-vamjLisq_vdxbk_B6Hbgt4VlDb3iVMuOKFFRSjlDZEXaMSorAivZXP5l4W8RpOU_JpyTgVnjI7Q4xT34Qs6vIX9Jli8D9hb6PfeHXPehS603ugO27DVvk_4kHzf4oUnc2z1Xt-gK6e7BJPfOkar56eP-YIs315e59MlMSWvOWlM4xzTIDWjUJRGVto640wjrattaaCAQjAHZZUPM1LUomKm0qVZa1qvhS3HqBjmmhhSiuDULvqtjkdVUHVyoAYHKjtQJwdKZuZhYL59B8f_AfW-mrHZM80dzzAb4JS5voWoPsMh9vnHsxvFAG18u4EIdhchJeViyEIhnkN_AFwDgkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A novel method to identify topological domains using Hi-C data</title><source>Wiley Open Access</source><creator>Wang, Yang ; Li, Yanjian ; Gao, Juntao ; Zhang, Michael Q.</creator><creatorcontrib>Wang, Yang ; Li, Yanjian ; Gao, Juntao ; Zhang, Michael Q.</creatorcontrib><description>Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data. Here we present a new method called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially able to discover more hints and clues about chromatin structural elements at domain level.</description><identifier>ISSN: 2095-4689</identifier><identifier>EISSN: 2095-4697</identifier><identifier>DOI: 10.1007/s40484-015-0047-9</identifier><language>eng</language><publisher>Beijing: Higher Education Press</publisher><subject>Bioinformatics ; Biomedical and Life Sciences ; chromatin domain ; Computational Biology/Bioinformatics ; Computer Appl. in Life Sciences ; dynamic programming ; Hi-C ; Life Sciences ; Mathematical and Computational Biology ; Research Article</subject><ispartof>Quantitative biology, 2015-08, Vol.3 (2), p.81-89</ispartof><rights>Copyright reserved, 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg</rights><rights>Higher Education Press and Springer-Verlag GmbH 2015</rights><rights>The Author(s) 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3</citedby><cites>FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1007%2Fs40484-015-0047-9$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1007%2Fs40484-015-0047-9$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,11541,27901,27902,46027,46451</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1007%2Fs40484-015-0047-9$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Yanjian</creatorcontrib><creatorcontrib>Gao, Juntao</creatorcontrib><creatorcontrib>Zhang, Michael Q.</creatorcontrib><title>A novel method to identify topological domains using Hi-C data</title><title>Quantitative biology</title><addtitle>Quant. Biol</addtitle><addtitle>Quant Biol</addtitle><description>Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data. Here we present a new method called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially able to discover more hints and clues about chromatin structural elements at domain level.</description><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>chromatin domain</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computer Appl. in Life Sciences</subject><subject>dynamic programming</subject><subject>Hi-C</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Research Article</subject><issn>2095-4689</issn><issn>2095-4697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURoMoWGofwF1eIJrJZGYSF0Jb1AoFEew6pMnNNDKdlKRV-vamjLisq_vdxbk_B6Hbgt4VlDb3iVMuOKFFRSjlDZEXaMSorAivZXP5l4W8RpOU_JpyTgVnjI7Q4xT34Qs6vIX9Jli8D9hb6PfeHXPehS603ugO27DVvk_4kHzf4oUnc2z1Xt-gK6e7BJPfOkar56eP-YIs315e59MlMSWvOWlM4xzTIDWjUJRGVto640wjrattaaCAQjAHZZUPM1LUomKm0qVZa1qvhS3HqBjmmhhSiuDULvqtjkdVUHVyoAYHKjtQJwdKZuZhYL59B8f_AfW-mrHZM80dzzAb4JS5voWoPsMh9vnHsxvFAG18u4EIdhchJeViyEIhnkN_AFwDgkY</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Wang, Yang</creator><creator>Li, Yanjian</creator><creator>Gao, Juntao</creator><creator>Zhang, Michael Q.</creator><general>Higher Education Press</general><general>Higher Education Press and SpringerāVerlag Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201508</creationdate><title>A novel method to identify topological domains using Hi-C data</title><author>Wang, Yang ; Li, Yanjian ; Gao, Juntao ; Zhang, Michael Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>chromatin domain</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computer Appl. in Life Sciences</topic><topic>dynamic programming</topic><topic>Hi-C</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Li, Yanjian</creatorcontrib><creatorcontrib>Gao, Juntao</creatorcontrib><creatorcontrib>Zhang, Michael Q.</creatorcontrib><collection>CrossRef</collection><jtitle>Quantitative biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yang</au><au>Li, Yanjian</au><au>Gao, Juntao</au><au>Zhang, Michael Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel method to identify topological domains using Hi-C data</atitle><jtitle>Quantitative biology</jtitle><stitle>Quant. Biol</stitle><stitle>Quant Biol</stitle><date>2015-08</date><risdate>2015</risdate><volume>3</volume><issue>2</issue><spage>81</spage><epage>89</epage><pages>81-89</pages><issn>2095-4689</issn><eissn>2095-4697</eissn><abstract>Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data. Here we present a new method called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially able to discover more hints and clues about chromatin structural elements at domain level.</abstract><cop>Beijing</cop><pub>Higher Education Press</pub><doi>10.1007/s40484-015-0047-9</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2095-4689 |
ispartof | Quantitative biology, 2015-08, Vol.3 (2), p.81-89 |
issn | 2095-4689 2095-4697 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s40484_015_0047_9 |
source | Wiley Open Access |
subjects | Bioinformatics Biomedical and Life Sciences chromatin domain Computational Biology/Bioinformatics Computer Appl. in Life Sciences dynamic programming Hi-C Life Sciences Mathematical and Computational Biology Research Article |
title | A novel method to identify topological domains using Hi-C data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20method%20to%20identify%20topological%20domains%20using%20Hi-C%20data&rft.jtitle=Quantitative%20biology&rft.au=Wang,%20Yang&rft.date=2015-08&rft.volume=3&rft.issue=2&rft.spage=81&rft.epage=89&rft.pages=81-89&rft.issn=2095-4689&rft.eissn=2095-4697&rft_id=info:doi/10.1007/s40484-015-0047-9&rft_dat=%3Cwiley_24P%3EQUB2BF00044%3C/wiley_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3464-7c7ff2ae9a20e13c95adfcfc79df6d3ce1e182fe35408c986852c5a3cba06b8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |