Loading…

Quantum ground states as equilibrium particle–vacuum interaction states

A remarkable feature of atomic ground states is that they are observed to be radiationless in nature, despite (from a classical viewpoint) typically involving charged particles in accelerated motions. The simple hydrogen atom is a case in point. This universal ground-state characteristic is shown to...

Full description

Saved in:
Bibliographic Details
Published in:Quantum Studies : Mathematics and Foundations 2016-04, Vol.3 (1), p.5-10
Main Author: Puthoff, Harold E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A remarkable feature of atomic ground states is that they are observed to be radiationless in nature, despite (from a classical viewpoint) typically involving charged particles in accelerated motions. The simple hydrogen atom is a case in point. This universal ground-state characteristic is shown to derive from particle–vacuum interactions in which a dynamic equilibrium is established between radiation emission due to particle acceleration, and compensatory absorption from the zero-point fluctuations of the vacuum electromagnetic field. The result is a net radiationless ground state. This principle constitutes an overarching constraint that delineates an important feature of quantum ground states.
ISSN:2196-5609
2196-5617
DOI:10.1007/s40509-015-0055-5