Loading…
Discrete element modelling (DEM) input parameters: understanding their impact on model predictions using statistical analysis
Selection or calibration of particle property input parameters is one of the key problematic aspects for the implementation of the discrete element method (DEM). In the current study, a parametric multi-level sensitivity method is employed to understand the impact of the DEM input particle propertie...
Saved in:
Published in: | Computational particle mechanics 2015-09, Vol.2 (3), p.283-299 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Selection or calibration of particle property input parameters is one of the key problematic aspects for the implementation of the discrete element method (DEM). In the current study, a parametric multi-level sensitivity method is employed to understand the impact of the DEM input particle properties on the bulk responses for a given simple system: discharge of particles from a flat bottom cylindrical container onto a plate. In this case study, particle properties, such as Young’s modulus, friction parameters and coefficient of restitution were systematically changed in order to assess their effect on material repose angles and particle flow rate (FR). It was shown that inter-particle static friction plays a primary role in determining both final angle of repose and FR, followed by the role of inter-particle rolling friction coefficient. The particle restitution coefficient and Young’s modulus were found to have insignificant impacts and were strongly cross correlated. The proposed approach provides a systematic method that can be used to show the importance of specific DEM input parameters for a given system and then potentially facilitates their selection or calibration. It is concluded that shortening the process for input parameters selection and calibration can help in the implementation of DEM. |
---|---|
ISSN: | 2196-4378 2196-4386 |
DOI: | 10.1007/s40571-015-0056-5 |