Loading…

Preservers of Completely Positive Matrix Rank for Inclines

A real symmetric matrix A is called completely positive if there exists a nonnegative real n × k matrix B such that A = B B t . The smallest value of k for all possible choices of nonnegative matrices B is called the CP-rank of A . We extend the ideas of complete positivity and the CP-rank to matric...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the Malaysian Mathematical Sciences Society 2019-03, Vol.42 (2), p.437-447
Main Authors: Beasley, LeRoy B., Mohindru, Preeti, Pereira, Rajesh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c288t-a9997391c2a716b745e6b2d07b24527bf9897c0b5feeee44a1cf3a31df77a0ee3
cites cdi_FETCH-LOGICAL-c288t-a9997391c2a716b745e6b2d07b24527bf9897c0b5feeee44a1cf3a31df77a0ee3
container_end_page 447
container_issue 2
container_start_page 437
container_title Bulletin of the Malaysian Mathematical Sciences Society
container_volume 42
creator Beasley, LeRoy B.
Mohindru, Preeti
Pereira, Rajesh
description A real symmetric matrix A is called completely positive if there exists a nonnegative real n × k matrix B such that A = B B t . The smallest value of k for all possible choices of nonnegative matrices B is called the CP-rank of A . We extend the ideas of complete positivity and the CP-rank to matrices whose entries are elements of an incline in a similar way. We classify maps on the set of n × n symmetric matrices over certain inclines which strongly preserve CP-rank-1 matrices as well as maps which preserve CP-rank-1 and CP-rank- k . The result suggests that there is a certain standard class of solutions for CP-rank preserver problems on incline matrices.
doi_str_mv 10.1007/s40840-017-0490-z
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s40840_017_0490_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s40840_017_0490_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-a9997391c2a716b745e6b2d07b24527bf9897c0b5feeee44a1cf3a31df77a0ee3</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EElHpB7DzDxjGjmPH7FDEo1IRFYK15aRjlJLGlR0q2q8nVVhzN7O5Z3QPIdccbjiAvk0SSgkMuGYgDbDjGckEL4FJAeqcZMCFYkpDcUnmKW1gTKGEEjwjd6uICeMeY6LB0ypsdx0O2B3oKqR2aPdIX9wQ2x_65vov6kOki77p2h7TFbnwrks4_7sz8vH48F49s-Xr06K6X7JGlOXAnDFG54Y3wmmuai0LVLVYg66FLISuvSmNbqAuPI6R0vHG5y7na6-1A8R8Rvj0t4khpYje7mK7dfFgOdiTv5387ehvT_72ODJiYtLY7T8x2k34jv048x_oFxW1Xik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Preservers of Completely Positive Matrix Rank for Inclines</title><source>Springer Nature</source><creator>Beasley, LeRoy B. ; Mohindru, Preeti ; Pereira, Rajesh</creator><creatorcontrib>Beasley, LeRoy B. ; Mohindru, Preeti ; Pereira, Rajesh</creatorcontrib><description>A real symmetric matrix A is called completely positive if there exists a nonnegative real n × k matrix B such that A = B B t . The smallest value of k for all possible choices of nonnegative matrices B is called the CP-rank of A . We extend the ideas of complete positivity and the CP-rank to matrices whose entries are elements of an incline in a similar way. We classify maps on the set of n × n symmetric matrices over certain inclines which strongly preserve CP-rank-1 matrices as well as maps which preserve CP-rank-1 and CP-rank- k . The result suggests that there is a certain standard class of solutions for CP-rank preserver problems on incline matrices.</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-017-0490-z</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Applications of Mathematics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2019-03, Vol.42 (2), p.437-447</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-a9997391c2a716b745e6b2d07b24527bf9897c0b5feeee44a1cf3a31df77a0ee3</citedby><cites>FETCH-LOGICAL-c288t-a9997391c2a716b745e6b2d07b24527bf9897c0b5feeee44a1cf3a31df77a0ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Beasley, LeRoy B.</creatorcontrib><creatorcontrib>Mohindru, Preeti</creatorcontrib><creatorcontrib>Pereira, Rajesh</creatorcontrib><title>Preservers of Completely Positive Matrix Rank for Inclines</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>A real symmetric matrix A is called completely positive if there exists a nonnegative real n × k matrix B such that A = B B t . The smallest value of k for all possible choices of nonnegative matrices B is called the CP-rank of A . We extend the ideas of complete positivity and the CP-rank to matrices whose entries are elements of an incline in a similar way. We classify maps on the set of n × n symmetric matrices over certain inclines which strongly preserve CP-rank-1 matrices as well as maps which preserve CP-rank-1 and CP-rank- k . The result suggests that there is a certain standard class of solutions for CP-rank preserver problems on incline matrices.</description><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EElHpB7DzDxjGjmPH7FDEo1IRFYK15aRjlJLGlR0q2q8nVVhzN7O5Z3QPIdccbjiAvk0SSgkMuGYgDbDjGckEL4FJAeqcZMCFYkpDcUnmKW1gTKGEEjwjd6uICeMeY6LB0ypsdx0O2B3oKqR2aPdIX9wQ2x_65vov6kOki77p2h7TFbnwrks4_7sz8vH48F49s-Xr06K6X7JGlOXAnDFG54Y3wmmuai0LVLVYg66FLISuvSmNbqAuPI6R0vHG5y7na6-1A8R8Rvj0t4khpYje7mK7dfFgOdiTv5387ehvT_72ODJiYtLY7T8x2k34jv048x_oFxW1Xik</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Beasley, LeRoy B.</creator><creator>Mohindru, Preeti</creator><creator>Pereira, Rajesh</creator><general>Springer Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190315</creationdate><title>Preservers of Completely Positive Matrix Rank for Inclines</title><author>Beasley, LeRoy B. ; Mohindru, Preeti ; Pereira, Rajesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-a9997391c2a716b745e6b2d07b24527bf9897c0b5feeee44a1cf3a31df77a0ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beasley, LeRoy B.</creatorcontrib><creatorcontrib>Mohindru, Preeti</creatorcontrib><creatorcontrib>Pereira, Rajesh</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beasley, LeRoy B.</au><au>Mohindru, Preeti</au><au>Pereira, Rajesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preservers of Completely Positive Matrix Rank for Inclines</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2019-03-15</date><risdate>2019</risdate><volume>42</volume><issue>2</issue><spage>437</spage><epage>447</epage><pages>437-447</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>A real symmetric matrix A is called completely positive if there exists a nonnegative real n × k matrix B such that A = B B t . The smallest value of k for all possible choices of nonnegative matrices B is called the CP-rank of A . We extend the ideas of complete positivity and the CP-rank to matrices whose entries are elements of an incline in a similar way. We classify maps on the set of n × n symmetric matrices over certain inclines which strongly preserve CP-rank-1 matrices as well as maps which preserve CP-rank-1 and CP-rank- k . The result suggests that there is a certain standard class of solutions for CP-rank preserver problems on incline matrices.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-017-0490-z</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0126-6705
ispartof Bulletin of the Malaysian Mathematical Sciences Society, 2019-03, Vol.42 (2), p.437-447
issn 0126-6705
2180-4206
language eng
recordid cdi_crossref_primary_10_1007_s40840_017_0490_z
source Springer Nature
subjects Applications of Mathematics
Mathematics
Mathematics and Statistics
title Preservers of Completely Positive Matrix Rank for Inclines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A23%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preservers%20of%20Completely%20Positive%20Matrix%20Rank%20for%20Inclines&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Beasley,%20LeRoy%20B.&rft.date=2019-03-15&rft.volume=42&rft.issue=2&rft.spage=437&rft.epage=447&rft.pages=437-447&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-017-0490-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s40840_017_0490_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c288t-a9997391c2a716b745e6b2d07b24527bf9897c0b5feeee44a1cf3a31df77a0ee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true