Loading…

Investigation of the Effects of Filling Speed, Casting Temperature and Metallurgical Quality on Fluidity of Lamellar Graphite Cast Iron at Different Section Thicknesses

In this study, the fluidity properties of the alloy were investigated at different casting temperatures, different section thicknesses, and varying casting parameters of lamellar graphite cast iron materials. To achieve our goal, we utilized sand molds that were created with specific parameters incl...

Full description

Saved in:
Bibliographic Details
Published in:International journal of metalcasting 2024-03
Main Authors: Köse, Sami, Çolak, Murat, Şüküroğlu, Ebru Emine
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, the fluidity properties of the alloy were investigated at different casting temperatures, different section thicknesses, and varying casting parameters of lamellar graphite cast iron materials. To achieve our goal, we utilized sand molds that were created with specific parameters including pouring temperature, metallurgical quality, section thickness, and fluidity test model. These molds were used for casting. Thus, the effect of fluidity properties in changing casting conditions and liquid metal advance distances at determined section thicknesses was investigated. Modeling was carried out with FlowCast casting simulation software by determining the liquid metal advance distance depending on the section thickness in the castings made in sand molds under changing casting conditions. The fluidity and advance distance of the liquid metal was determined comparatively with experimental and modeling techniques under the changing casting conditions in the parameters determined in this study. When the outcomes were examined; it was observed that different liquid metal advance distances occur at different cross-section thicknesses depending on the changing conditions.
ISSN:1939-5981
2163-3193
DOI:10.1007/s40962-024-01301-z