Loading…

Temperature profile and melt depth in laser powder bed fusion of Ti-6Al-4V titanium alloy

In this paper, the prediction of temperature profile and melt depth for laser powder bed fusion (L-PBF) of Ti-6Al-4V titanium powder material was performed by numerically solving the heat conduction-diffusion equation using a finite difference method. A review of the literature in numerical modeling...

Full description

Saved in:
Bibliographic Details
Published in:Progress in additive manufacturing 2017-09, Vol.2 (3), p.169-177
Main Authors: Criales, Luis E., Özel, Tuğrul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the prediction of temperature profile and melt depth for laser powder bed fusion (L-PBF) of Ti-6Al-4V titanium powder material was performed by numerically solving the heat conduction-diffusion equation using a finite difference method. A review of the literature in numerical modeling for laser-based additive metal manufacturing is presented. Initially, the temperature profile along the depth direction into the powder material is calculated for a stationary single pulse laser heat source to understand the transient behavior of the temperature rise during L-PBF. The effect of varying laser pulse energy, average power, and the powder material’s density is analyzed. A method to calculate and predict the maximum depth at which localized melting of the powder material occurs is provided.
ISSN:2363-9512
2363-9520
DOI:10.1007/s40964-017-0029-8