Loading…

Open image computations for elliptic curves over number fields

For a non-CM elliptic curve E defined over a number field K , the Galois action on its torsion points gives rise to a Galois representation ρ E : Gal ( K ¯ / K ) → GL 2 ( Z ^ ) that is unique up to isomorphism. A renowned theorem of Serre says that the image of ρ E is an open, and hence finite index...

Full description

Saved in:
Bibliographic Details
Published in:Research in number theory 2025-03, Vol.11 (1), Article 1
Main Author: Zywina, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c172t-cdaf231f061b998d6b5cb193578be2ff5ffd096bad8650873056fe39e36eacfd3
container_end_page
container_issue 1
container_start_page
container_title Research in number theory
container_volume 11
creator Zywina, David
description For a non-CM elliptic curve E defined over a number field K , the Galois action on its torsion points gives rise to a Galois representation ρ E : Gal ( K ¯ / K ) → GL 2 ( Z ^ ) that is unique up to isomorphism. A renowned theorem of Serre says that the image of ρ E is an open, and hence finite index, subgroup of GL 2 ( Z ^ ) . In an earlier work of the author, an algorithm was given that computed the image of ρ E up to conjugacy in GL 2 ( Z ^ ) in the special case K = Q . A fundamental ingredient of this earlier work was the Kronecker–Weber theorem whose conclusion fails for number fields K ≠ Q . We shall give an overview of an analogous algorithm for a general number field and work out the required group theory. We also give some bounds on the index in Serre’s theorem for a typical elliptic curve over a fixed number field.
doi_str_mv 10.1007/s40993-024-00599-2
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s40993_024_00599_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s40993_024_00599_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-cdaf231f061b998d6b5cb193578be2ff5ffd096bad8650873056fe39e36eacfd3</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoSHND3SlH1A7GkWytSmU0BcEsmnXwpZHwcGxjWQH-vdVm66zuncxZ7gcxu4lPEiA4jGtwVolANcCQFsr8IotUBklrNb6OneNKEAauGWrlA4Auas1Ii7Y026knrfHak_cD8dxnqqpHfrEwxA5dV07Tq3nfo4nSnw4UeT9fKxzhJa6Jt2xm1B1iVb_uWRfry-fm3ex3b19bJ63wssCJ-GbKqCSAYysrS0bU2tfS6t0UdaEIegQGrCmrprSaCgLBdoEUpaUocqHRi0Znv_6OKQUKbgx5tHx20lwvxLcWYLLEtyfBIcZUmco5eN-T9Edhjn2eecl6gcobWBa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Open image computations for elliptic curves over number fields</title><source>Springer Nature</source><creator>Zywina, David</creator><creatorcontrib>Zywina, David</creatorcontrib><description>For a non-CM elliptic curve E defined over a number field K , the Galois action on its torsion points gives rise to a Galois representation ρ E : Gal ( K ¯ / K ) → GL 2 ( Z ^ ) that is unique up to isomorphism. A renowned theorem of Serre says that the image of ρ E is an open, and hence finite index, subgroup of GL 2 ( Z ^ ) . In an earlier work of the author, an algorithm was given that computed the image of ρ E up to conjugacy in GL 2 ( Z ^ ) in the special case K = Q . A fundamental ingredient of this earlier work was the Kronecker–Weber theorem whose conclusion fails for number fields K ≠ Q . We shall give an overview of an analogous algorithm for a general number field and work out the required group theory. We also give some bounds on the index in Serre’s theorem for a typical elliptic curve over a fixed number field.</description><identifier>ISSN: 2522-0160</identifier><identifier>EISSN: 2363-9555</identifier><identifier>DOI: 10.1007/s40993-024-00599-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Number Theory</subject><ispartof>Research in number theory, 2025-03, Vol.11 (1), Article 1</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c172t-cdaf231f061b998d6b5cb193578be2ff5ffd096bad8650873056fe39e36eacfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zywina, David</creatorcontrib><title>Open image computations for elliptic curves over number fields</title><title>Research in number theory</title><addtitle>Res. number theory</addtitle><description>For a non-CM elliptic curve E defined over a number field K , the Galois action on its torsion points gives rise to a Galois representation ρ E : Gal ( K ¯ / K ) → GL 2 ( Z ^ ) that is unique up to isomorphism. A renowned theorem of Serre says that the image of ρ E is an open, and hence finite index, subgroup of GL 2 ( Z ^ ) . In an earlier work of the author, an algorithm was given that computed the image of ρ E up to conjugacy in GL 2 ( Z ^ ) in the special case K = Q . A fundamental ingredient of this earlier work was the Kronecker–Weber theorem whose conclusion fails for number fields K ≠ Q . We shall give an overview of an analogous algorithm for a general number field and work out the required group theory. We also give some bounds on the index in Serre’s theorem for a typical elliptic curve over a fixed number field.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>2522-0160</issn><issn>2363-9555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoSHND3SlH1A7GkWytSmU0BcEsmnXwpZHwcGxjWQH-vdVm66zuncxZ7gcxu4lPEiA4jGtwVolANcCQFsr8IotUBklrNb6OneNKEAauGWrlA4Auas1Ii7Y026knrfHak_cD8dxnqqpHfrEwxA5dV07Tq3nfo4nSnw4UeT9fKxzhJa6Jt2xm1B1iVb_uWRfry-fm3ex3b19bJ63wssCJ-GbKqCSAYysrS0bU2tfS6t0UdaEIegQGrCmrprSaCgLBdoEUpaUocqHRi0Znv_6OKQUKbgx5tHx20lwvxLcWYLLEtyfBIcZUmco5eN-T9Edhjn2eecl6gcobWBa</recordid><startdate>20250301</startdate><enddate>20250301</enddate><creator>Zywina, David</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20250301</creationdate><title>Open image computations for elliptic curves over number fields</title><author>Zywina, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-cdaf231f061b998d6b5cb193578be2ff5ffd096bad8650873056fe39e36eacfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zywina, David</creatorcontrib><collection>CrossRef</collection><jtitle>Research in number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zywina, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open image computations for elliptic curves over number fields</atitle><jtitle>Research in number theory</jtitle><stitle>Res. number theory</stitle><date>2025-03-01</date><risdate>2025</risdate><volume>11</volume><issue>1</issue><artnum>1</artnum><issn>2522-0160</issn><eissn>2363-9555</eissn><abstract>For a non-CM elliptic curve E defined over a number field K , the Galois action on its torsion points gives rise to a Galois representation ρ E : Gal ( K ¯ / K ) → GL 2 ( Z ^ ) that is unique up to isomorphism. A renowned theorem of Serre says that the image of ρ E is an open, and hence finite index, subgroup of GL 2 ( Z ^ ) . In an earlier work of the author, an algorithm was given that computed the image of ρ E up to conjugacy in GL 2 ( Z ^ ) in the special case K = Q . A fundamental ingredient of this earlier work was the Kronecker–Weber theorem whose conclusion fails for number fields K ≠ Q . We shall give an overview of an analogous algorithm for a general number field and work out the required group theory. We also give some bounds on the index in Serre’s theorem for a typical elliptic curve over a fixed number field.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40993-024-00599-2</doi></addata></record>
fulltext fulltext
identifier ISSN: 2522-0160
ispartof Research in number theory, 2025-03, Vol.11 (1), Article 1
issn 2522-0160
2363-9555
language eng
recordid cdi_crossref_primary_10_1007_s40993_024_00599_2
source Springer Nature
subjects Mathematics
Mathematics and Statistics
Number Theory
title Open image computations for elliptic curves over number fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%20image%20computations%20for%20elliptic%20curves%20over%20number%20fields&rft.jtitle=Research%20in%20number%20theory&rft.au=Zywina,%20David&rft.date=2025-03-01&rft.volume=11&rft.issue=1&rft.artnum=1&rft.issn=2522-0160&rft.eissn=2363-9555&rft_id=info:doi/10.1007/s40993-024-00599-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s40993_024_00599_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172t-cdaf231f061b998d6b5cb193578be2ff5ffd096bad8650873056fe39e36eacfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true