Loading…

Experimental and Numerical Studies of the Failure Mode and Mechanical Performance of Helices in Screw Piles

Screw piles have a greater bearing capacity than straight piles due to their larger helix. However, an excessively large helix can cause bending and reduce the soil bearing capacity. This study investigates the failure pattern and mechanical performance of screw pile helices through full-scale load...

Full description

Saved in:
Bibliographic Details
Published in:International journal of civil engineering (Tehran. Online) 2024-05, Vol.22 (5), p.839-857
Main Authors: Qu, Songzhao, Zhang, Quan, Guo, Yonghua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Screw piles have a greater bearing capacity than straight piles due to their larger helix. However, an excessively large helix can cause bending and reduce the soil bearing capacity. This study investigates the failure pattern and mechanical performance of screw pile helices through full-scale load tests and numerical analyses. The results revealed that the helix buckled at its connection to the shaft. Additionally, the geological characteristics of the soil in which the pile was located had a negligible effect on the mechanical properties of the helix. Furthermore, the shape of the anchor plate (flat or helical) had a negligible effect on the load-bearing properties of the pile or the mechanical properties of the anchor plate itself. To simplify the analysis, the screw pile helix was assumed to be a flat circular plate. For a uniformly loaded flat circular plate with fixed inner edges, the result of Roark’s formula satisfactorily agreed with the measured maximum radial normal stress in the helix. Moreover, the value given by Roark’s formula for a flat circular plate with simply supported inner edges agreed well with the measured helix deformation.
ISSN:1735-0522
2383-3874
DOI:10.1007/s40999-023-00923-4