Loading…

An efficient approach for highway lane detection based on the Hough transform and Kalman filter

The advances in lane detection technologies and computer vision enabled the evolution of lane-keeping systems, driver assistance and lane departure warning in traffic management for road safety. However, it is very challenging to identify and track the lane lines due to improper marking of lane line...

Full description

Saved in:
Bibliographic Details
Published in:Innovative infrastructure solutions : the official journal of the Soil-Structure Interaction Group in Egypt (SSIGE) 2022-10, Vol.7 (5), Article 290
Main Authors: Kumar, Sunil, Jailia, Manisha, Varshney, Sudeep
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The advances in lane detection technologies and computer vision enabled the evolution of lane-keeping systems, driver assistance and lane departure warning in traffic management for road safety. However, it is very challenging to identify and track the lane lines due to improper marking of lane lines and blind turns on the road. The present work proposes effective and efficient vision-based real-time lane markings and tracking lane detection methods for straight and curved lane lines. That can adapt to various environmental conditions. Further, the Hough transform optimization is performed to identify lane lines accurately, and the Kalman filter is employed to track lane lines detected in the ROI by the Sobel operator. The proposed approaches show their significance by achieving real-time response and high accuracy for a vehicle in lane change assistant system on highways. While comparing, the proposed methods show better results in terms of detection rate and processing time for straight lanes and detection accuracy, precision, recall and F1-Score for the curved lanes. The result of processing time and accuracy rate for straight lane detection is 16.7 fps, 96.3%, respectively, and the accuracy, precision, recall and F1-scores for curved lane detection are 97.74%, 98.15%, 97.35% and 97.75% in videos, respectively.
ISSN:2364-4176
2364-4184
DOI:10.1007/s41062-022-00887-9