Loading…
On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model
Consider a semiparametric regression model Y = Z β + m ( X ) + ϵ , with Y being the response variable , X and Z being the covariates , β the unknown parameter, m ( · ) an unknown function preferably a non-linear one, and ϵ the random error . In this article, our objective is to test the independence...
Saved in:
Published in: | Journal of the Indian Society for Probability and Statistics 2022-12, Vol.23 (2), p.541-564 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c205t-48d294e541106d24171e42660d7cc024ff463ffe88056d25b9de7febbc8aad0e3 |
container_end_page | 564 |
container_issue | 2 |
container_start_page | 541 |
container_title | Journal of the Indian Society for Probability and Statistics |
container_volume | 23 |
creator | Das, Sthitadhi Maiti, Saran Ishika |
description | Consider a semiparametric regression model
Y
=
Z
β
+
m
(
X
)
+
ϵ
, with
Y
being the
response variable
,
X
and
Z
being the
covariates
,
β
the unknown parameter,
m
(
·
)
an unknown function preferably a non-linear one, and
ϵ
the
random error
. In this article, our objective is to test the independence between
X
and
ϵ
only, given the assumption of no relationship between
Z
and
ϵ
. Using the concept of Robinson’s (Econometrica 56:931–954, 1988) technique of
β
estimation at the first stage and then considering a transformed nonparametric model, test statistic is formed on the function of induced order statistics of
Y
. Thereafter constructing
Le Cam’s contiguous alternatives
, the local powers of the proposed rank-based test statistic as well as power performances of some other relevant statistics are discussed. Further, in reference to the finite sample simulation study, the power performance of newly introduced test is investigated. Finally, for a real biological data the practicability of the proposed test technique under the setting of semiparametric regression model is judged. |
doi_str_mv | 10.1007/s41096-022-00139-0 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s41096_022_00139_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s41096_022_00139_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-48d294e541106d24171e42660d7cc024ff463ffe88056d25b9de7febbc8aad0e3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiQT5A576B6rTj213j0hQSVASxXNTdqe4BFrSrhr_vYt44ORpJpnnfTN5CLnmcMMBzG1WHCrNQAgGwGXF4IwMhNSKVYWuzk_2SzLKeQMAwkhljByQ9SLQ7h3pEnNHo6fjnGPduq6Ngd5h94UY6HMMe5fcDrvU1nQSP13qCaQuNHSaUky0DfQVd-0J9YLrhDkfap5ig9srcuHdNuPobw7J2_10OXlk88XDbDKes1pA0TFVNqJSWCjOQTdCccNRCa2hMXUNQnmvtPQeyxKK_l6sqgaNx9WqLp1rAOWQiGNvnWLOCb3dp3bn0rflYA-27NGW7W3ZX1sW-pA8hnIPhzUmu4kfKfR__pf6AauAbkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model</title><source>Springer Nature</source><creator>Das, Sthitadhi ; Maiti, Saran Ishika</creator><creatorcontrib>Das, Sthitadhi ; Maiti, Saran Ishika</creatorcontrib><description>Consider a semiparametric regression model
Y
=
Z
β
+
m
(
X
)
+
ϵ
, with
Y
being the
response variable
,
X
and
Z
being the
covariates
,
β
the unknown parameter,
m
(
·
)
an unknown function preferably a non-linear one, and
ϵ
the
random error
. In this article, our objective is to test the independence between
X
and
ϵ
only, given the assumption of no relationship between
Z
and
ϵ
. Using the concept of Robinson’s (Econometrica 56:931–954, 1988) technique of
β
estimation at the first stage and then considering a transformed nonparametric model, test statistic is formed on the function of induced order statistics of
Y
. Thereafter constructing
Le Cam’s contiguous alternatives
, the local powers of the proposed rank-based test statistic as well as power performances of some other relevant statistics are discussed. Further, in reference to the finite sample simulation study, the power performance of newly introduced test is investigated. Finally, for a real biological data the practicability of the proposed test technique under the setting of semiparametric regression model is judged.</description><identifier>ISSN: 2364-9569</identifier><identifier>EISSN: 2364-9569</identifier><identifier>DOI: 10.1007/s41096-022-00139-0</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Mathematics and Statistics ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Research Article ; Statistical Theory and Methods ; Statistics</subject><ispartof>Journal of the Indian Society for Probability and Statistics, 2022-12, Vol.23 (2), p.541-564</ispartof><rights>The Indian Society for Probability and Statistics (ISPS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-48d294e541106d24171e42660d7cc024ff463ffe88056d25b9de7febbc8aad0e3</cites><orcidid>0000-0003-1787-8154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Das, Sthitadhi</creatorcontrib><creatorcontrib>Maiti, Saran Ishika</creatorcontrib><title>On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model</title><title>Journal of the Indian Society for Probability and Statistics</title><addtitle>J Indian Soc Probab Stat</addtitle><description>Consider a semiparametric regression model
Y
=
Z
β
+
m
(
X
)
+
ϵ
, with
Y
being the
response variable
,
X
and
Z
being the
covariates
,
β
the unknown parameter,
m
(
·
)
an unknown function preferably a non-linear one, and
ϵ
the
random error
. In this article, our objective is to test the independence between
X
and
ϵ
only, given the assumption of no relationship between
Z
and
ϵ
. Using the concept of Robinson’s (Econometrica 56:931–954, 1988) technique of
β
estimation at the first stage and then considering a transformed nonparametric model, test statistic is formed on the function of induced order statistics of
Y
. Thereafter constructing
Le Cam’s contiguous alternatives
, the local powers of the proposed rank-based test statistic as well as power performances of some other relevant statistics are discussed. Further, in reference to the finite sample simulation study, the power performance of newly introduced test is investigated. Finally, for a real biological data the practicability of the proposed test technique under the setting of semiparametric regression model is judged.</description><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Research Article</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><issn>2364-9569</issn><issn>2364-9569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEQhhujiQT5A576B6rTj213j0hQSVASxXNTdqe4BFrSrhr_vYt44ORpJpnnfTN5CLnmcMMBzG1WHCrNQAgGwGXF4IwMhNSKVYWuzk_2SzLKeQMAwkhljByQ9SLQ7h3pEnNHo6fjnGPduq6Ngd5h94UY6HMMe5fcDrvU1nQSP13qCaQuNHSaUky0DfQVd-0J9YLrhDkfap5ig9srcuHdNuPobw7J2_10OXlk88XDbDKes1pA0TFVNqJSWCjOQTdCccNRCa2hMXUNQnmvtPQeyxKK_l6sqgaNx9WqLp1rAOWQiGNvnWLOCb3dp3bn0rflYA-27NGW7W3ZX1sW-pA8hnIPhzUmu4kfKfR__pf6AauAbkk</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Das, Sthitadhi</creator><creator>Maiti, Saran Ishika</creator><general>Springer India</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1787-8154</orcidid></search><sort><creationdate>20221201</creationdate><title>On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model</title><author>Das, Sthitadhi ; Maiti, Saran Ishika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-48d294e541106d24171e42660d7cc024ff463ffe88056d25b9de7febbc8aad0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Research Article</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Sthitadhi</creatorcontrib><creatorcontrib>Maiti, Saran Ishika</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society for Probability and Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Sthitadhi</au><au>Maiti, Saran Ishika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model</atitle><jtitle>Journal of the Indian Society for Probability and Statistics</jtitle><stitle>J Indian Soc Probab Stat</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>541</spage><epage>564</epage><pages>541-564</pages><issn>2364-9569</issn><eissn>2364-9569</eissn><abstract>Consider a semiparametric regression model
Y
=
Z
β
+
m
(
X
)
+
ϵ
, with
Y
being the
response variable
,
X
and
Z
being the
covariates
,
β
the unknown parameter,
m
(
·
)
an unknown function preferably a non-linear one, and
ϵ
the
random error
. In this article, our objective is to test the independence between
X
and
ϵ
only, given the assumption of no relationship between
Z
and
ϵ
. Using the concept of Robinson’s (Econometrica 56:931–954, 1988) technique of
β
estimation at the first stage and then considering a transformed nonparametric model, test statistic is formed on the function of induced order statistics of
Y
. Thereafter constructing
Le Cam’s contiguous alternatives
, the local powers of the proposed rank-based test statistic as well as power performances of some other relevant statistics are discussed. Further, in reference to the finite sample simulation study, the power performance of newly introduced test is investigated. Finally, for a real biological data the practicability of the proposed test technique under the setting of semiparametric regression model is judged.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s41096-022-00139-0</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1787-8154</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2364-9569 |
ispartof | Journal of the Indian Society for Probability and Statistics, 2022-12, Vol.23 (2), p.541-564 |
issn | 2364-9569 2364-9569 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s41096_022_00139_0 |
source | Springer Nature |
subjects | Mathematics and Statistics Operations Research/Decision Theory Probability Theory and Stochastic Processes Research Article Statistical Theory and Methods Statistics |
title | On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Test%20of%20Association%20Between%20Nonparametric%20Covariate%20and%20Error%20in%20Semiparametric%20Regression%20Model&rft.jtitle=Journal%20of%20the%20Indian%20Society%20for%20Probability%20and%20Statistics&rft.au=Das,%20Sthitadhi&rft.date=2022-12-01&rft.volume=23&rft.issue=2&rft.spage=541&rft.epage=564&rft.pages=541-564&rft.issn=2364-9569&rft.eissn=2364-9569&rft_id=info:doi/10.1007/s41096-022-00139-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s41096_022_00139_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c205t-48d294e541106d24171e42660d7cc024ff463ffe88056d25b9de7febbc8aad0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |