Loading…

On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model

Consider a semiparametric regression model Y = Z β + m ( X ) + ϵ , with Y being the response variable , X and Z being the covariates , β the unknown parameter, m ( · ) an unknown function preferably a non-linear one, and ϵ the random error . In this article, our objective is to test the independence...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Indian Society for Probability and Statistics 2022-12, Vol.23 (2), p.541-564
Main Authors: Das, Sthitadhi, Maiti, Saran Ishika
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c205t-48d294e541106d24171e42660d7cc024ff463ffe88056d25b9de7febbc8aad0e3
container_end_page 564
container_issue 2
container_start_page 541
container_title Journal of the Indian Society for Probability and Statistics
container_volume 23
creator Das, Sthitadhi
Maiti, Saran Ishika
description Consider a semiparametric regression model Y = Z β + m ( X ) + ϵ , with Y being the response variable , X and Z being the covariates , β the unknown parameter, m ( · ) an unknown function preferably a non-linear one, and ϵ the random error . In this article, our objective is to test the independence between X and ϵ only, given the assumption of no relationship between Z and ϵ . Using the concept of Robinson’s (Econometrica 56:931–954, 1988) technique of β estimation at the first stage and then considering a transformed nonparametric model, test statistic is formed on the function of induced order statistics of Y . Thereafter constructing Le Cam’s contiguous alternatives , the local powers of the proposed rank-based test statistic as well as power performances of some other relevant statistics are discussed. Further, in reference to the finite sample simulation study, the power performance of newly introduced test is investigated. Finally, for a real biological data the practicability of the proposed test technique under the setting of semiparametric regression model is judged.
doi_str_mv 10.1007/s41096-022-00139-0
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s41096_022_00139_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s41096_022_00139_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-48d294e541106d24171e42660d7cc024ff463ffe88056d25b9de7febbc8aad0e3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiQT5A576B6rTj213j0hQSVASxXNTdqe4BFrSrhr_vYt44ORpJpnnfTN5CLnmcMMBzG1WHCrNQAgGwGXF4IwMhNSKVYWuzk_2SzLKeQMAwkhljByQ9SLQ7h3pEnNHo6fjnGPduq6Ngd5h94UY6HMMe5fcDrvU1nQSP13qCaQuNHSaUky0DfQVd-0J9YLrhDkfap5ig9srcuHdNuPobw7J2_10OXlk88XDbDKes1pA0TFVNqJSWCjOQTdCccNRCa2hMXUNQnmvtPQeyxKK_l6sqgaNx9WqLp1rAOWQiGNvnWLOCb3dp3bn0rflYA-27NGW7W3ZX1sW-pA8hnIPhzUmu4kfKfR__pf6AauAbkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model</title><source>Springer Nature</source><creator>Das, Sthitadhi ; Maiti, Saran Ishika</creator><creatorcontrib>Das, Sthitadhi ; Maiti, Saran Ishika</creatorcontrib><description>Consider a semiparametric regression model Y = Z β + m ( X ) + ϵ , with Y being the response variable , X and Z being the covariates , β the unknown parameter, m ( · ) an unknown function preferably a non-linear one, and ϵ the random error . In this article, our objective is to test the independence between X and ϵ only, given the assumption of no relationship between Z and ϵ . Using the concept of Robinson’s (Econometrica 56:931–954, 1988) technique of β estimation at the first stage and then considering a transformed nonparametric model, test statistic is formed on the function of induced order statistics of Y . Thereafter constructing Le Cam’s contiguous alternatives , the local powers of the proposed rank-based test statistic as well as power performances of some other relevant statistics are discussed. Further, in reference to the finite sample simulation study, the power performance of newly introduced test is investigated. Finally, for a real biological data the practicability of the proposed test technique under the setting of semiparametric regression model is judged.</description><identifier>ISSN: 2364-9569</identifier><identifier>EISSN: 2364-9569</identifier><identifier>DOI: 10.1007/s41096-022-00139-0</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Mathematics and Statistics ; Operations Research/Decision Theory ; Probability Theory and Stochastic Processes ; Research Article ; Statistical Theory and Methods ; Statistics</subject><ispartof>Journal of the Indian Society for Probability and Statistics, 2022-12, Vol.23 (2), p.541-564</ispartof><rights>The Indian Society for Probability and Statistics (ISPS) 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c205t-48d294e541106d24171e42660d7cc024ff463ffe88056d25b9de7febbc8aad0e3</cites><orcidid>0000-0003-1787-8154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Das, Sthitadhi</creatorcontrib><creatorcontrib>Maiti, Saran Ishika</creatorcontrib><title>On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model</title><title>Journal of the Indian Society for Probability and Statistics</title><addtitle>J Indian Soc Probab Stat</addtitle><description>Consider a semiparametric regression model Y = Z β + m ( X ) + ϵ , with Y being the response variable , X and Z being the covariates , β the unknown parameter, m ( · ) an unknown function preferably a non-linear one, and ϵ the random error . In this article, our objective is to test the independence between X and ϵ only, given the assumption of no relationship between Z and ϵ . Using the concept of Robinson’s (Econometrica 56:931–954, 1988) technique of β estimation at the first stage and then considering a transformed nonparametric model, test statistic is formed on the function of induced order statistics of Y . Thereafter constructing Le Cam’s contiguous alternatives , the local powers of the proposed rank-based test statistic as well as power performances of some other relevant statistics are discussed. Further, in reference to the finite sample simulation study, the power performance of newly introduced test is investigated. Finally, for a real biological data the practicability of the proposed test technique under the setting of semiparametric regression model is judged.</description><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Research Article</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><issn>2364-9569</issn><issn>2364-9569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAjEQhhujiQT5A576B6rTj213j0hQSVASxXNTdqe4BFrSrhr_vYt44ORpJpnnfTN5CLnmcMMBzG1WHCrNQAgGwGXF4IwMhNSKVYWuzk_2SzLKeQMAwkhljByQ9SLQ7h3pEnNHo6fjnGPduq6Ngd5h94UY6HMMe5fcDrvU1nQSP13qCaQuNHSaUky0DfQVd-0J9YLrhDkfap5ig9srcuHdNuPobw7J2_10OXlk88XDbDKes1pA0TFVNqJSWCjOQTdCccNRCa2hMXUNQnmvtPQeyxKK_l6sqgaNx9WqLp1rAOWQiGNvnWLOCb3dp3bn0rflYA-27NGW7W3ZX1sW-pA8hnIPhzUmu4kfKfR__pf6AauAbkk</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Das, Sthitadhi</creator><creator>Maiti, Saran Ishika</creator><general>Springer India</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1787-8154</orcidid></search><sort><creationdate>20221201</creationdate><title>On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model</title><author>Das, Sthitadhi ; Maiti, Saran Ishika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-48d294e541106d24171e42660d7cc024ff463ffe88056d25b9de7febbc8aad0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Research Article</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Sthitadhi</creatorcontrib><creatorcontrib>Maiti, Saran Ishika</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Indian Society for Probability and Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Sthitadhi</au><au>Maiti, Saran Ishika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model</atitle><jtitle>Journal of the Indian Society for Probability and Statistics</jtitle><stitle>J Indian Soc Probab Stat</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>23</volume><issue>2</issue><spage>541</spage><epage>564</epage><pages>541-564</pages><issn>2364-9569</issn><eissn>2364-9569</eissn><abstract>Consider a semiparametric regression model Y = Z β + m ( X ) + ϵ , with Y being the response variable , X and Z being the covariates , β the unknown parameter, m ( · ) an unknown function preferably a non-linear one, and ϵ the random error . In this article, our objective is to test the independence between X and ϵ only, given the assumption of no relationship between Z and ϵ . Using the concept of Robinson’s (Econometrica 56:931–954, 1988) technique of β estimation at the first stage and then considering a transformed nonparametric model, test statistic is formed on the function of induced order statistics of Y . Thereafter constructing Le Cam’s contiguous alternatives , the local powers of the proposed rank-based test statistic as well as power performances of some other relevant statistics are discussed. Further, in reference to the finite sample simulation study, the power performance of newly introduced test is investigated. Finally, for a real biological data the practicability of the proposed test technique under the setting of semiparametric regression model is judged.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s41096-022-00139-0</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-1787-8154</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2364-9569
ispartof Journal of the Indian Society for Probability and Statistics, 2022-12, Vol.23 (2), p.541-564
issn 2364-9569
2364-9569
language eng
recordid cdi_crossref_primary_10_1007_s41096_022_00139_0
source Springer Nature
subjects Mathematics and Statistics
Operations Research/Decision Theory
Probability Theory and Stochastic Processes
Research Article
Statistical Theory and Methods
Statistics
title On the Test of Association Between Nonparametric Covariate and Error in Semiparametric Regression Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A45%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Test%20of%20Association%20Between%20Nonparametric%20Covariate%20and%20Error%20in%20Semiparametric%20Regression%20Model&rft.jtitle=Journal%20of%20the%20Indian%20Society%20for%20Probability%20and%20Statistics&rft.au=Das,%20Sthitadhi&rft.date=2022-12-01&rft.volume=23&rft.issue=2&rft.spage=541&rft.epage=564&rft.pages=541-564&rft.issn=2364-9569&rft.eissn=2364-9569&rft_id=info:doi/10.1007/s41096-022-00139-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s41096_022_00139_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c205t-48d294e541106d24171e42660d7cc024ff463ffe88056d25b9de7febbc8aad0e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true