Loading…
Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection
This paper presents a modeling approach for defining a measured data set obtained from an optical sensing circuit based on the use of a fuzzy reasoning system. A simple but effective optical sensor is designed for in vitro determination of glucose concentrations in an aqueous solution. The measured...
Saved in:
Published in: | Augmented human research 2020-12, Vol.5 (1), Article 17 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083 |
---|---|
cites | cdi_FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Augmented human research |
container_volume | 5 |
creator | Gupta, Bhumika Verma, Agya Ram |
description | This paper presents a modeling approach for defining a measured data set obtained from an optical sensing circuit based on the use of a fuzzy reasoning system. A simple but effective optical sensor is designed for in vitro determination of glucose concentrations in an aqueous solution. The measured data used in this study include analog voltages that reflect the absorbance values of three wavelengths measured in different concentrations of glucose from an RGB light-emitting diode (LED). The parameters of the fuzzy models are optimized using the bounded-range artificial bee colony (BR-ABC) algorithm to achieve the desired model performance. The results indicate that the optimized fuzzy model demonstrates high performance quality. The minimum mean square error (MSE) obtained from the singleton fuzzy model with the BR-ABC algorithm is 0.00014, which is better than the reported MSE value achieved with the Takagi–Sugeno fuzzy model. |
doi_str_mv | 10.1007/s41133-019-0026-1 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s41133_019_0026_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s41133_019_0026_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpB7DzDxg8GTuPZZvQglSEhGBtOY5dUqUxstNF-_WkCmLJamZxz9XVIeQe-ANwnj1GAYDIOBSM8yRlcEVmCaaSCUzk9d8P2S1ZxLjnYwgB0wJmpKpsbHc99Y5qunpny1VJl93Oh3b4OrCVjrah6-P5fKKvvrEddT7QTXc0Plpa2cGaofX9Hblxuot28Xvn5HP99FE-s-3b5qVcbpkZ5wGrOUcniiYVos6kLrisMXdZAlIYg1ggZrXIXJ26S0Sm2ua5MYVrhExyzXOcE5h6TfAxBuvUd2gPOpwUcHUxoSYTajShLiYUjEwyMXHM9jsb1N4fQz_O_Af6Aa9ZXgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection</title><source>Springer Nature</source><creator>Gupta, Bhumika ; Verma, Agya Ram</creator><creatorcontrib>Gupta, Bhumika ; Verma, Agya Ram</creatorcontrib><description>This paper presents a modeling approach for defining a measured data set obtained from an optical sensing circuit based on the use of a fuzzy reasoning system. A simple but effective optical sensor is designed for in vitro determination of glucose concentrations in an aqueous solution. The measured data used in this study include analog voltages that reflect the absorbance values of three wavelengths measured in different concentrations of glucose from an RGB light-emitting diode (LED). The parameters of the fuzzy models are optimized using the bounded-range artificial bee colony (BR-ABC) algorithm to achieve the desired model performance. The results indicate that the optimized fuzzy model demonstrates high performance quality. The minimum mean square error (MSE) obtained from the singleton fuzzy model with the BR-ABC algorithm is 0.00014, which is better than the reported MSE value achieved with the Takagi–Sugeno fuzzy model.</description><identifier>ISSN: 2365-4317</identifier><identifier>EISSN: 2365-4325</identifier><identifier>DOI: 10.1007/s41133-019-0026-1</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Biomedical Engineering and Bioengineering ; Cognitive Psychology ; Computational Intelligence ; Emerging trends in Computational Intelligence and Complexity ; Engineering ; Human Physiology ; Original Paper ; Robotics and Automation ; User Interfaces and Human Computer Interaction</subject><ispartof>Augmented human research, 2020-12, Vol.5 (1), Article 17</ispartof><rights>Springer Nature Singapore Pte Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083</citedby><cites>FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Gupta, Bhumika</creatorcontrib><creatorcontrib>Verma, Agya Ram</creatorcontrib><title>Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection</title><title>Augmented human research</title><addtitle>Augment Hum Res</addtitle><description>This paper presents a modeling approach for defining a measured data set obtained from an optical sensing circuit based on the use of a fuzzy reasoning system. A simple but effective optical sensor is designed for in vitro determination of glucose concentrations in an aqueous solution. The measured data used in this study include analog voltages that reflect the absorbance values of three wavelengths measured in different concentrations of glucose from an RGB light-emitting diode (LED). The parameters of the fuzzy models are optimized using the bounded-range artificial bee colony (BR-ABC) algorithm to achieve the desired model performance. The results indicate that the optimized fuzzy model demonstrates high performance quality. The minimum mean square error (MSE) obtained from the singleton fuzzy model with the BR-ABC algorithm is 0.00014, which is better than the reported MSE value achieved with the Takagi–Sugeno fuzzy model.</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Cognitive Psychology</subject><subject>Computational Intelligence</subject><subject>Emerging trends in Computational Intelligence and Complexity</subject><subject>Engineering</subject><subject>Human Physiology</subject><subject>Original Paper</subject><subject>Robotics and Automation</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>2365-4317</issn><issn>2365-4325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpB7DzDxg8GTuPZZvQglSEhGBtOY5dUqUxstNF-_WkCmLJamZxz9XVIeQe-ANwnj1GAYDIOBSM8yRlcEVmCaaSCUzk9d8P2S1ZxLjnYwgB0wJmpKpsbHc99Y5qunpny1VJl93Oh3b4OrCVjrah6-P5fKKvvrEddT7QTXc0Plpa2cGaofX9Hblxuot28Xvn5HP99FE-s-3b5qVcbpkZ5wGrOUcniiYVos6kLrisMXdZAlIYg1ggZrXIXJ26S0Sm2ua5MYVrhExyzXOcE5h6TfAxBuvUd2gPOpwUcHUxoSYTajShLiYUjEwyMXHM9jsb1N4fQz_O_Af6Aa9ZXgE</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Gupta, Bhumika</creator><creator>Verma, Agya Ram</creator><general>Springer Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202012</creationdate><title>Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection</title><author>Gupta, Bhumika ; Verma, Agya Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Cognitive Psychology</topic><topic>Computational Intelligence</topic><topic>Emerging trends in Computational Intelligence and Complexity</topic><topic>Engineering</topic><topic>Human Physiology</topic><topic>Original Paper</topic><topic>Robotics and Automation</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Bhumika</creatorcontrib><creatorcontrib>Verma, Agya Ram</creatorcontrib><collection>CrossRef</collection><jtitle>Augmented human research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Bhumika</au><au>Verma, Agya Ram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection</atitle><jtitle>Augmented human research</jtitle><stitle>Augment Hum Res</stitle><date>2020-12</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><artnum>17</artnum><issn>2365-4317</issn><eissn>2365-4325</eissn><abstract>This paper presents a modeling approach for defining a measured data set obtained from an optical sensing circuit based on the use of a fuzzy reasoning system. A simple but effective optical sensor is designed for in vitro determination of glucose concentrations in an aqueous solution. The measured data used in this study include analog voltages that reflect the absorbance values of three wavelengths measured in different concentrations of glucose from an RGB light-emitting diode (LED). The parameters of the fuzzy models are optimized using the bounded-range artificial bee colony (BR-ABC) algorithm to achieve the desired model performance. The results indicate that the optimized fuzzy model demonstrates high performance quality. The minimum mean square error (MSE) obtained from the singleton fuzzy model with the BR-ABC algorithm is 0.00014, which is better than the reported MSE value achieved with the Takagi–Sugeno fuzzy model.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s41133-019-0026-1</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2365-4317 |
ispartof | Augmented human research, 2020-12, Vol.5 (1), Article 17 |
issn | 2365-4317 2365-4325 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s41133_019_0026_1 |
source | Springer Nature |
subjects | Biomedical Engineering and Bioengineering Cognitive Psychology Computational Intelligence Emerging trends in Computational Intelligence and Complexity Engineering Human Physiology Original Paper Robotics and Automation User Interfaces and Human Computer Interaction |
title | Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20BR-ABC%20Algorithm-Based%20Fuzzy%20Model%20for%20Glucose%20Detection&rft.jtitle=Augmented%20human%20research&rft.au=Gupta,%20Bhumika&rft.date=2020-12&rft.volume=5&rft.issue=1&rft.artnum=17&rft.issn=2365-4317&rft.eissn=2365-4325&rft_id=info:doi/10.1007/s41133-019-0026-1&rft_dat=%3Ccrossref_sprin%3E10_1007_s41133_019_0026_1%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |