Loading…

Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection

This paper presents a modeling approach for defining a measured data set obtained from an optical sensing circuit based on the use of a fuzzy reasoning system. A simple but effective optical sensor is designed for in vitro determination of glucose concentrations in an aqueous solution. The measured...

Full description

Saved in:
Bibliographic Details
Published in:Augmented human research 2020-12, Vol.5 (1), Article 17
Main Authors: Gupta, Bhumika, Verma, Agya Ram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083
cites cdi_FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083
container_end_page
container_issue 1
container_start_page
container_title Augmented human research
container_volume 5
creator Gupta, Bhumika
Verma, Agya Ram
description This paper presents a modeling approach for defining a measured data set obtained from an optical sensing circuit based on the use of a fuzzy reasoning system. A simple but effective optical sensor is designed for in vitro determination of glucose concentrations in an aqueous solution. The measured data used in this study include analog voltages that reflect the absorbance values of three wavelengths measured in different concentrations of glucose from an RGB light-emitting diode (LED). The parameters of the fuzzy models are optimized using the bounded-range artificial bee colony (BR-ABC) algorithm to achieve the desired model performance. The results indicate that the optimized fuzzy model demonstrates high performance quality. The minimum mean square error (MSE) obtained from the singleton fuzzy model with the BR-ABC algorithm is 0.00014, which is better than the reported MSE value achieved with the Takagi–Sugeno fuzzy model.
doi_str_mv 10.1007/s41133-019-0026-1
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s41133_019_0026_1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s41133_019_0026_1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpB7DzDxg8GTuPZZvQglSEhGBtOY5dUqUxstNF-_WkCmLJamZxz9XVIeQe-ANwnj1GAYDIOBSM8yRlcEVmCaaSCUzk9d8P2S1ZxLjnYwgB0wJmpKpsbHc99Y5qunpny1VJl93Oh3b4OrCVjrah6-P5fKKvvrEddT7QTXc0Plpa2cGaofX9Hblxuot28Xvn5HP99FE-s-3b5qVcbpkZ5wGrOUcniiYVos6kLrisMXdZAlIYg1ggZrXIXJ26S0Sm2ua5MYVrhExyzXOcE5h6TfAxBuvUd2gPOpwUcHUxoSYTajShLiYUjEwyMXHM9jsb1N4fQz_O_Af6Aa9ZXgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection</title><source>Springer Nature</source><creator>Gupta, Bhumika ; Verma, Agya Ram</creator><creatorcontrib>Gupta, Bhumika ; Verma, Agya Ram</creatorcontrib><description>This paper presents a modeling approach for defining a measured data set obtained from an optical sensing circuit based on the use of a fuzzy reasoning system. A simple but effective optical sensor is designed for in vitro determination of glucose concentrations in an aqueous solution. The measured data used in this study include analog voltages that reflect the absorbance values of three wavelengths measured in different concentrations of glucose from an RGB light-emitting diode (LED). The parameters of the fuzzy models are optimized using the bounded-range artificial bee colony (BR-ABC) algorithm to achieve the desired model performance. The results indicate that the optimized fuzzy model demonstrates high performance quality. The minimum mean square error (MSE) obtained from the singleton fuzzy model with the BR-ABC algorithm is 0.00014, which is better than the reported MSE value achieved with the Takagi–Sugeno fuzzy model.</description><identifier>ISSN: 2365-4317</identifier><identifier>EISSN: 2365-4325</identifier><identifier>DOI: 10.1007/s41133-019-0026-1</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Biomedical Engineering and Bioengineering ; Cognitive Psychology ; Computational Intelligence ; Emerging trends in Computational Intelligence and Complexity ; Engineering ; Human Physiology ; Original Paper ; Robotics and Automation ; User Interfaces and Human Computer Interaction</subject><ispartof>Augmented human research, 2020-12, Vol.5 (1), Article 17</ispartof><rights>Springer Nature Singapore Pte Ltd. 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083</citedby><cites>FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Gupta, Bhumika</creatorcontrib><creatorcontrib>Verma, Agya Ram</creatorcontrib><title>Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection</title><title>Augmented human research</title><addtitle>Augment Hum Res</addtitle><description>This paper presents a modeling approach for defining a measured data set obtained from an optical sensing circuit based on the use of a fuzzy reasoning system. A simple but effective optical sensor is designed for in vitro determination of glucose concentrations in an aqueous solution. The measured data used in this study include analog voltages that reflect the absorbance values of three wavelengths measured in different concentrations of glucose from an RGB light-emitting diode (LED). The parameters of the fuzzy models are optimized using the bounded-range artificial bee colony (BR-ABC) algorithm to achieve the desired model performance. The results indicate that the optimized fuzzy model demonstrates high performance quality. The minimum mean square error (MSE) obtained from the singleton fuzzy model with the BR-ABC algorithm is 0.00014, which is better than the reported MSE value achieved with the Takagi–Sugeno fuzzy model.</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Cognitive Psychology</subject><subject>Computational Intelligence</subject><subject>Emerging trends in Computational Intelligence and Complexity</subject><subject>Engineering</subject><subject>Human Physiology</subject><subject>Original Paper</subject><subject>Robotics and Automation</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>2365-4317</issn><issn>2365-4325</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpB7DzDxg8GTuPZZvQglSEhGBtOY5dUqUxstNF-_WkCmLJamZxz9XVIeQe-ANwnj1GAYDIOBSM8yRlcEVmCaaSCUzk9d8P2S1ZxLjnYwgB0wJmpKpsbHc99Y5qunpny1VJl93Oh3b4OrCVjrah6-P5fKKvvrEddT7QTXc0Plpa2cGaofX9Hblxuot28Xvn5HP99FE-s-3b5qVcbpkZ5wGrOUcniiYVos6kLrisMXdZAlIYg1ggZrXIXJ26S0Sm2ua5MYVrhExyzXOcE5h6TfAxBuvUd2gPOpwUcHUxoSYTajShLiYUjEwyMXHM9jsb1N4fQz_O_Af6Aa9ZXgE</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Gupta, Bhumika</creator><creator>Verma, Agya Ram</creator><general>Springer Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202012</creationdate><title>Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection</title><author>Gupta, Bhumika ; Verma, Agya Ram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Cognitive Psychology</topic><topic>Computational Intelligence</topic><topic>Emerging trends in Computational Intelligence and Complexity</topic><topic>Engineering</topic><topic>Human Physiology</topic><topic>Original Paper</topic><topic>Robotics and Automation</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Bhumika</creatorcontrib><creatorcontrib>Verma, Agya Ram</creatorcontrib><collection>CrossRef</collection><jtitle>Augmented human research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Bhumika</au><au>Verma, Agya Ram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection</atitle><jtitle>Augmented human research</jtitle><stitle>Augment Hum Res</stitle><date>2020-12</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><artnum>17</artnum><issn>2365-4317</issn><eissn>2365-4325</eissn><abstract>This paper presents a modeling approach for defining a measured data set obtained from an optical sensing circuit based on the use of a fuzzy reasoning system. A simple but effective optical sensor is designed for in vitro determination of glucose concentrations in an aqueous solution. The measured data used in this study include analog voltages that reflect the absorbance values of three wavelengths measured in different concentrations of glucose from an RGB light-emitting diode (LED). The parameters of the fuzzy models are optimized using the bounded-range artificial bee colony (BR-ABC) algorithm to achieve the desired model performance. The results indicate that the optimized fuzzy model demonstrates high performance quality. The minimum mean square error (MSE) obtained from the singleton fuzzy model with the BR-ABC algorithm is 0.00014, which is better than the reported MSE value achieved with the Takagi–Sugeno fuzzy model.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s41133-019-0026-1</doi></addata></record>
fulltext fulltext
identifier ISSN: 2365-4317
ispartof Augmented human research, 2020-12, Vol.5 (1), Article 17
issn 2365-4317
2365-4325
language eng
recordid cdi_crossref_primary_10_1007_s41133_019_0026_1
source Springer Nature
subjects Biomedical Engineering and Bioengineering
Cognitive Psychology
Computational Intelligence
Emerging trends in Computational Intelligence and Complexity
Engineering
Human Physiology
Original Paper
Robotics and Automation
User Interfaces and Human Computer Interaction
title Design of a BR-ABC Algorithm-Based Fuzzy Model for Glucose Detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20BR-ABC%20Algorithm-Based%20Fuzzy%20Model%20for%20Glucose%20Detection&rft.jtitle=Augmented%20human%20research&rft.au=Gupta,%20Bhumika&rft.date=2020-12&rft.volume=5&rft.issue=1&rft.artnum=17&rft.issn=2365-4317&rft.eissn=2365-4325&rft_id=info:doi/10.1007/s41133-019-0026-1&rft_dat=%3Ccrossref_sprin%3E10_1007_s41133_019_0026_1%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1331-b003f49d644b75a905b38f72154cc339337b47fb6fd64456ae88cc9fd4528a083%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true