Loading…
Action Video Game Players Do Not Differ in the Perception of Contrast-Based Motion Illusions but Experience More Vection and Less Discomfort in a Virtual Environment Compared to Non-Action Video Game Players
Action video game players (AVGPs) show enhanced visual perceptual functions compared to their non-video game playing peers (NVGPs). Whether AVGPs are more susceptible towards static contrast motion illusions, such as Fraser Wilcox illusions, has not been addressed so far. Based on their improved per...
Saved in:
Published in: | Journal of cognitive enhancement 2022-03, Vol.6 (1), p.3-19 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Action video game players (AVGPs) show enhanced visual perceptual functions compared to their non-video game playing peers (NVGPs). Whether AVGPs are more susceptible towards static contrast motion illusions, such as Fraser Wilcox illusions, has not been addressed so far. Based on their improved perceptual skills, AVGPs are expected to be more susceptible to the illusions and perceive more motion in them. The experience of illusory self-motion (vection) is believed to be dependent on top-down attentional processes; AVGPs should therefore experience stronger vection compared to NVGPs based on their improved attentional skills. Lastly, due to their extensive prior experience with virtual environments, AVGPs should experience less discomfort in VR compared to NVGPs. We presented rotating and expanding motion illusions in a virtual environment and asked 22 AVGPs and 21 NVGPs to indicate the strength of illusory motion, as well as the level of discomfort and vection experienced when exposed to these motion illusions. Results indicated that AVGPs and NVGPs perceived the same amount of motion when viewing these illusions. However, AVGPs perceived more vection and less discomfort compared to NVGPs, possibly due to factors such as enhanced top-down attentional control and adaptation. No differences in the perception of expanding and rotating illusions were found. Discomfort experienced by AVGPs was related to illusion strength, suggesting that contrast illusions might evoke the perceived discomfort rather than the virtual environment. Further studies are required to investigate the relationship between contrast sensitivity, migraine and the perception of illusion in AVGPs which should include illusory motion onset and duration measures. |
---|---|
ISSN: | 2509-3290 2509-3304 |
DOI: | 10.1007/s41465-021-00215-6 |