Loading…

Stability of a generalized Euler–Lagrange radical multifarious functional equation

In this paper, we introduce a new generalized version of the Euler–Lagrange functional equation, namely, generalized Euler–Lagrange radical multifarious functional equation and investigate its Hyers–Ulam stability in fuzzy modular spaces (in short, FM -space) by using the fixed point approach.

Saved in:
Bibliographic Details
Published in:The Journal of Analysis 2024-12, Vol.32 (6), p.3185-3195
Main Authors: Ramdoss, Murali, Pachaiyappan, Divyakumari, Rassias, John M., Park, Choonkil
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c172t-957f271743380544d987ed02e4b10fc1e05fcb054e477c2f5f6d6453d83e89123
container_end_page 3195
container_issue 6
container_start_page 3185
container_title The Journal of Analysis
container_volume 32
creator Ramdoss, Murali
Pachaiyappan, Divyakumari
Rassias, John M.
Park, Choonkil
description In this paper, we introduce a new generalized version of the Euler–Lagrange functional equation, namely, generalized Euler–Lagrange radical multifarious functional equation and investigate its Hyers–Ulam stability in fuzzy modular spaces (in short, FM -space) by using the fixed point approach.
doi_str_mv 10.1007/s41478-024-00795-4
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s41478_024_00795_4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s41478_024_00795_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-957f271743380544d987ed02e4b10fc1e05fcb054e477c2f5f6d6453d83e89123</originalsourceid><addsrcrecordid>eNp9kEtOwzAQhi0EElHpBVj5AobxK06WqCoPqRILytpyHTtylSZgJ4uy4g7ckJPgEtas5vn_mvkQuqZwQwHUbRJUqIoAEySXtSTiDBWMl4owCfQcFVArSnhJ6SVaprQHAA5QS1YWaPsyml3ownjEg8cGt6530XThwzV4PXUufn9-bUwbTd86HE0TrOnwYerG4E0Mw5Swn3o7hqHPffc-mVN6hS686ZJb_sUFer1fb1ePZPP88LS62xBLFRtJLZVniirBeQVSiKaulGuAObGj4C11IL3d5YkTSlnmpS-bUkjeVNxVNWV8gdjsa-OQUnRev8VwMPGoKegTGj2j0RmN_kWjRRbxWZTycv4q6v0wxXx--k_1A66AaCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Stability of a generalized Euler–Lagrange radical multifarious functional equation</title><source>Springer Nature</source><creator>Ramdoss, Murali ; Pachaiyappan, Divyakumari ; Rassias, John M. ; Park, Choonkil</creator><creatorcontrib>Ramdoss, Murali ; Pachaiyappan, Divyakumari ; Rassias, John M. ; Park, Choonkil</creatorcontrib><description>In this paper, we introduce a new generalized version of the Euler–Lagrange functional equation, namely, generalized Euler–Lagrange radical multifarious functional equation and investigate its Hyers–Ulam stability in fuzzy modular spaces (in short, FM -space) by using the fixed point approach.</description><identifier>ISSN: 0971-3611</identifier><identifier>EISSN: 2367-2501</identifier><identifier>DOI: 10.1007/s41478-024-00795-4</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Abstract Harmonic Analysis ; Analysis ; Fourier Analysis ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Measure and Integration ; Original Research Paper ; Special Functions</subject><ispartof>The Journal of Analysis, 2024-12, Vol.32 (6), p.3185-3195</ispartof><rights>The Author(s), under exclusive licence to The Forum D’Analystes 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c172t-957f271743380544d987ed02e4b10fc1e05fcb054e477c2f5f6d6453d83e89123</cites><orcidid>0000-0001-6329-8228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ramdoss, Murali</creatorcontrib><creatorcontrib>Pachaiyappan, Divyakumari</creatorcontrib><creatorcontrib>Rassias, John M.</creatorcontrib><creatorcontrib>Park, Choonkil</creatorcontrib><title>Stability of a generalized Euler–Lagrange radical multifarious functional equation</title><title>The Journal of Analysis</title><addtitle>J Anal</addtitle><description>In this paper, we introduce a new generalized version of the Euler–Lagrange functional equation, namely, generalized Euler–Lagrange radical multifarious functional equation and investigate its Hyers–Ulam stability in fuzzy modular spaces (in short, FM -space) by using the fixed point approach.</description><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Fourier Analysis</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Measure and Integration</subject><subject>Original Research Paper</subject><subject>Special Functions</subject><issn>0971-3611</issn><issn>2367-2501</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtOwzAQhi0EElHpBVj5AobxK06WqCoPqRILytpyHTtylSZgJ4uy4g7ckJPgEtas5vn_mvkQuqZwQwHUbRJUqIoAEySXtSTiDBWMl4owCfQcFVArSnhJ6SVaprQHAA5QS1YWaPsyml3ownjEg8cGt6530XThwzV4PXUufn9-bUwbTd86HE0TrOnwYerG4E0Mw5Swn3o7hqHPffc-mVN6hS686ZJb_sUFer1fb1ePZPP88LS62xBLFRtJLZVniirBeQVSiKaulGuAObGj4C11IL3d5YkTSlnmpS-bUkjeVNxVNWV8gdjsa-OQUnRev8VwMPGoKegTGj2j0RmN_kWjRRbxWZTycv4q6v0wxXx--k_1A66AaCQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Ramdoss, Murali</creator><creator>Pachaiyappan, Divyakumari</creator><creator>Rassias, John M.</creator><creator>Park, Choonkil</creator><general>Springer Nature Singapore</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6329-8228</orcidid></search><sort><creationdate>20241201</creationdate><title>Stability of a generalized Euler–Lagrange radical multifarious functional equation</title><author>Ramdoss, Murali ; Pachaiyappan, Divyakumari ; Rassias, John M. ; Park, Choonkil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-957f271743380544d987ed02e4b10fc1e05fcb054e477c2f5f6d6453d83e89123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Fourier Analysis</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Measure and Integration</topic><topic>Original Research Paper</topic><topic>Special Functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramdoss, Murali</creatorcontrib><creatorcontrib>Pachaiyappan, Divyakumari</creatorcontrib><creatorcontrib>Rassias, John M.</creatorcontrib><creatorcontrib>Park, Choonkil</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramdoss, Murali</au><au>Pachaiyappan, Divyakumari</au><au>Rassias, John M.</au><au>Park, Choonkil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of a generalized Euler–Lagrange radical multifarious functional equation</atitle><jtitle>The Journal of Analysis</jtitle><stitle>J Anal</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>32</volume><issue>6</issue><spage>3185</spage><epage>3195</epage><pages>3185-3195</pages><issn>0971-3611</issn><eissn>2367-2501</eissn><abstract>In this paper, we introduce a new generalized version of the Euler–Lagrange functional equation, namely, generalized Euler–Lagrange radical multifarious functional equation and investigate its Hyers–Ulam stability in fuzzy modular spaces (in short, FM -space) by using the fixed point approach.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s41478-024-00795-4</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6329-8228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0971-3611
ispartof The Journal of Analysis, 2024-12, Vol.32 (6), p.3185-3195
issn 0971-3611
2367-2501
language eng
recordid cdi_crossref_primary_10_1007_s41478_024_00795_4
source Springer Nature
subjects Abstract Harmonic Analysis
Analysis
Fourier Analysis
Functional Analysis
Mathematics
Mathematics and Statistics
Measure and Integration
Original Research Paper
Special Functions
title Stability of a generalized Euler–Lagrange radical multifarious functional equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T14%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20a%20generalized%20Euler%E2%80%93Lagrange%20radical%20multifarious%20functional%20equation&rft.jtitle=The%20Journal%20of%20Analysis&rft.au=Ramdoss,%20Murali&rft.date=2024-12-01&rft.volume=32&rft.issue=6&rft.spage=3185&rft.epage=3195&rft.pages=3185-3195&rft.issn=0971-3611&rft.eissn=2367-2501&rft_id=info:doi/10.1007/s41478-024-00795-4&rft_dat=%3Ccrossref_sprin%3E10_1007_s41478_024_00795_4%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172t-957f271743380544d987ed02e4b10fc1e05fcb054e477c2f5f6d6453d83e89123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true