Loading…
Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers
This paper evaluates the ability of two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to generate land-use maps using the recently launched Landsat-9 and Sentinel-2, two of the most used and popular satellite imagery sources. The potential to improve Landsat-9 per...
Saved in:
Published in: | Journal of geovisualization and spatial analysis 2022-12, Vol.6 (2), Article 35 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93 |
---|---|
cites | cdi_FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Journal of geovisualization and spatial analysis |
container_volume | 6 |
creator | Bouslihim, Yassine Kharrou, Mohamed Hakim Miftah, Abdelhalim Attou, Taha Bouchaou, Lhoussaine Chehbouni, Abdelghani |
description | This paper evaluates the ability of two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to generate land-use maps using the recently launched Landsat-9 and Sentinel-2, two of the most used and popular satellite imagery sources. The potential to improve Landsat-9 performance was tested by pan-sharpening different bands of high-resolution data (15 m). For optimal performance of both classifiers, model tuning methods were applied by trying different combinations of key parameters of each model. This comparison was made in two different areas in Central Morocco. The results show that SVM performs slightly better than RF in classifying two images. In addition, Sentinel-2 exhibits significant multivariety classification ability compared to the pan-sharpened Landsat-9, despite the improved resolution of the latter. Lastly, the best classification performances were recorded for the combination Sentinel-2/SVM classifier. At last, machine learning algorithms prove their efficiency in classifying satellite images with high performance. |
doi_str_mv | 10.1007/s41651-022-00130-0 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s41651_022_00130_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s41651_022_00130_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EElXpC3DyCxh2bSeOjyjiTwoCCXq2tolDU7VOZIcDb09CgSOnHe3OjFYfY5cIVwhgrpPGPEMBUgoAVCDghC1kBlYUhbSnfxrhnK1S2gGANEqbXC5YX_aHgWIX3vkLBZG2FAcffMMrCk2iUVg-Cf7qw9gFvxeSt338Pop18rzcU0pd29U0dn3g6zQXPVG9ncy88hTDvPh1-Zgu2FlL--RXP3PJ1ne3b-WDqJ7vH8ubStRKwyg0KrKgERSqxmiJuCm8yayxGhptG8i1LJqmtlqrrLbS00bZ3LSAmUXaWLVk8thbxz6l6Fs3xO5A8dMhuJmaO1JzEzX3Tc3BFFLHUBpmIj66Xf8Rw_Tnf6kv4tFufw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers</title><source>Springer Link</source><creator>Bouslihim, Yassine ; Kharrou, Mohamed Hakim ; Miftah, Abdelhalim ; Attou, Taha ; Bouchaou, Lhoussaine ; Chehbouni, Abdelghani</creator><creatorcontrib>Bouslihim, Yassine ; Kharrou, Mohamed Hakim ; Miftah, Abdelhalim ; Attou, Taha ; Bouchaou, Lhoussaine ; Chehbouni, Abdelghani</creatorcontrib><description>This paper evaluates the ability of two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to generate land-use maps using the recently launched Landsat-9 and Sentinel-2, two of the most used and popular satellite imagery sources. The potential to improve Landsat-9 performance was tested by pan-sharpening different bands of high-resolution data (15 m). For optimal performance of both classifiers, model tuning methods were applied by trying different combinations of key parameters of each model. This comparison was made in two different areas in Central Morocco. The results show that SVM performs slightly better than RF in classifying two images. In addition, Sentinel-2 exhibits significant multivariety classification ability compared to the pan-sharpened Landsat-9, despite the improved resolution of the latter. Lastly, the best classification performances were recorded for the combination Sentinel-2/SVM classifier. At last, machine learning algorithms prove their efficiency in classifying satellite images with high performance.</description><identifier>ISSN: 2509-8810</identifier><identifier>EISSN: 2509-8829</identifier><identifier>DOI: 10.1007/s41651-022-00130-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>cities ; Earth and Environmental Science ; Geographical Information Systems/Cartography ; Geography ; Geology ; Landscape/Regional and Urban Planning ; Remote Sensing/Photogrammetry ; towns ; Urban Geography ; Urbanism (inc. megacities</subject><ispartof>Journal of geovisualization and spatial analysis, 2022-12, Vol.6 (2), Article 35</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93</citedby><cites>FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93</cites><orcidid>0000-0002-3666-1850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bouslihim, Yassine</creatorcontrib><creatorcontrib>Kharrou, Mohamed Hakim</creatorcontrib><creatorcontrib>Miftah, Abdelhalim</creatorcontrib><creatorcontrib>Attou, Taha</creatorcontrib><creatorcontrib>Bouchaou, Lhoussaine</creatorcontrib><creatorcontrib>Chehbouni, Abdelghani</creatorcontrib><title>Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers</title><title>Journal of geovisualization and spatial analysis</title><addtitle>J geovis spat anal</addtitle><description>This paper evaluates the ability of two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to generate land-use maps using the recently launched Landsat-9 and Sentinel-2, two of the most used and popular satellite imagery sources. The potential to improve Landsat-9 performance was tested by pan-sharpening different bands of high-resolution data (15 m). For optimal performance of both classifiers, model tuning methods were applied by trying different combinations of key parameters of each model. This comparison was made in two different areas in Central Morocco. The results show that SVM performs slightly better than RF in classifying two images. In addition, Sentinel-2 exhibits significant multivariety classification ability compared to the pan-sharpened Landsat-9, despite the improved resolution of the latter. Lastly, the best classification performances were recorded for the combination Sentinel-2/SVM classifier. At last, machine learning algorithms prove their efficiency in classifying satellite images with high performance.</description><subject>cities</subject><subject>Earth and Environmental Science</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Geology</subject><subject>Landscape/Regional and Urban Planning</subject><subject>Remote Sensing/Photogrammetry</subject><subject>towns</subject><subject>Urban Geography</subject><subject>Urbanism (inc. megacities</subject><issn>2509-8810</issn><issn>2509-8829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EElXpC3DyCxh2bSeOjyjiTwoCCXq2tolDU7VOZIcDb09CgSOnHe3OjFYfY5cIVwhgrpPGPEMBUgoAVCDghC1kBlYUhbSnfxrhnK1S2gGANEqbXC5YX_aHgWIX3vkLBZG2FAcffMMrCk2iUVg-Cf7qw9gFvxeSt338Pop18rzcU0pd29U0dn3g6zQXPVG9ncy88hTDvPh1-Zgu2FlL--RXP3PJ1ne3b-WDqJ7vH8ubStRKwyg0KrKgERSqxmiJuCm8yayxGhptG8i1LJqmtlqrrLbS00bZ3LSAmUXaWLVk8thbxz6l6Fs3xO5A8dMhuJmaO1JzEzX3Tc3BFFLHUBpmIj66Xf8Rw_Tnf6kv4tFufw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Bouslihim, Yassine</creator><creator>Kharrou, Mohamed Hakim</creator><creator>Miftah, Abdelhalim</creator><creator>Attou, Taha</creator><creator>Bouchaou, Lhoussaine</creator><creator>Chehbouni, Abdelghani</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3666-1850</orcidid></search><sort><creationdate>20221201</creationdate><title>Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers</title><author>Bouslihim, Yassine ; Kharrou, Mohamed Hakim ; Miftah, Abdelhalim ; Attou, Taha ; Bouchaou, Lhoussaine ; Chehbouni, Abdelghani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>cities</topic><topic>Earth and Environmental Science</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Geology</topic><topic>Landscape/Regional and Urban Planning</topic><topic>Remote Sensing/Photogrammetry</topic><topic>towns</topic><topic>Urban Geography</topic><topic>Urbanism (inc. megacities</topic><toplevel>online_resources</toplevel><creatorcontrib>Bouslihim, Yassine</creatorcontrib><creatorcontrib>Kharrou, Mohamed Hakim</creatorcontrib><creatorcontrib>Miftah, Abdelhalim</creatorcontrib><creatorcontrib>Attou, Taha</creatorcontrib><creatorcontrib>Bouchaou, Lhoussaine</creatorcontrib><creatorcontrib>Chehbouni, Abdelghani</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of geovisualization and spatial analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouslihim, Yassine</au><au>Kharrou, Mohamed Hakim</au><au>Miftah, Abdelhalim</au><au>Attou, Taha</au><au>Bouchaou, Lhoussaine</au><au>Chehbouni, Abdelghani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers</atitle><jtitle>Journal of geovisualization and spatial analysis</jtitle><stitle>J geovis spat anal</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>6</volume><issue>2</issue><artnum>35</artnum><issn>2509-8810</issn><eissn>2509-8829</eissn><abstract>This paper evaluates the ability of two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to generate land-use maps using the recently launched Landsat-9 and Sentinel-2, two of the most used and popular satellite imagery sources. The potential to improve Landsat-9 performance was tested by pan-sharpening different bands of high-resolution data (15 m). For optimal performance of both classifiers, model tuning methods were applied by trying different combinations of key parameters of each model. This comparison was made in two different areas in Central Morocco. The results show that SVM performs slightly better than RF in classifying two images. In addition, Sentinel-2 exhibits significant multivariety classification ability compared to the pan-sharpened Landsat-9, despite the improved resolution of the latter. Lastly, the best classification performances were recorded for the combination Sentinel-2/SVM classifier. At last, machine learning algorithms prove their efficiency in classifying satellite images with high performance.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s41651-022-00130-0</doi><orcidid>https://orcid.org/0000-0002-3666-1850</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2509-8810 |
ispartof | Journal of geovisualization and spatial analysis, 2022-12, Vol.6 (2), Article 35 |
issn | 2509-8810 2509-8829 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s41651_022_00130_0 |
source | Springer Link |
subjects | cities Earth and Environmental Science Geographical Information Systems/Cartography Geography Geology Landscape/Regional and Urban Planning Remote Sensing/Photogrammetry towns Urban Geography Urbanism (inc. megacities |
title | Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20Pan-sharpened%20Landsat-9%20and%20Sentinel-2%20for%20Land-Use%20Classification%20Using%20Machine%20Learning%20Classifiers&rft.jtitle=Journal%20of%20geovisualization%20and%20spatial%20analysis&rft.au=Bouslihim,%20Yassine&rft.date=2022-12-01&rft.volume=6&rft.issue=2&rft.artnum=35&rft.issn=2509-8810&rft.eissn=2509-8829&rft_id=info:doi/10.1007/s41651-022-00130-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s41651_022_00130_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |