Loading…

Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers

This paper evaluates the ability of two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to generate land-use maps using the recently launched Landsat-9 and Sentinel-2, two of the most used and popular satellite imagery sources. The potential to improve Landsat-9 per...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geovisualization and spatial analysis 2022-12, Vol.6 (2), Article 35
Main Authors: Bouslihim, Yassine, Kharrou, Mohamed Hakim, Miftah, Abdelhalim, Attou, Taha, Bouchaou, Lhoussaine, Chehbouni, Abdelghani
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93
cites cdi_FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93
container_end_page
container_issue 2
container_start_page
container_title Journal of geovisualization and spatial analysis
container_volume 6
creator Bouslihim, Yassine
Kharrou, Mohamed Hakim
Miftah, Abdelhalim
Attou, Taha
Bouchaou, Lhoussaine
Chehbouni, Abdelghani
description This paper evaluates the ability of two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to generate land-use maps using the recently launched Landsat-9 and Sentinel-2, two of the most used and popular satellite imagery sources. The potential to improve Landsat-9 performance was tested by pan-sharpening different bands of high-resolution data (15 m). For optimal performance of both classifiers, model tuning methods were applied by trying different combinations of key parameters of each model. This comparison was made in two different areas in Central Morocco. The results show that SVM performs slightly better than RF in classifying two images. In addition, Sentinel-2 exhibits significant multivariety classification ability compared to the pan-sharpened Landsat-9, despite the improved resolution of the latter. Lastly, the best classification performances were recorded for the combination Sentinel-2/SVM classifier. At last, machine learning algorithms prove their efficiency in classifying satellite images with high performance.
doi_str_mv 10.1007/s41651-022-00130-0
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s41651_022_00130_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s41651_022_00130_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EElXpC3DyCxh2bSeOjyjiTwoCCXq2tolDU7VOZIcDb09CgSOnHe3OjFYfY5cIVwhgrpPGPEMBUgoAVCDghC1kBlYUhbSnfxrhnK1S2gGANEqbXC5YX_aHgWIX3vkLBZG2FAcffMMrCk2iUVg-Cf7qw9gFvxeSt338Pop18rzcU0pd29U0dn3g6zQXPVG9ncy88hTDvPh1-Zgu2FlL--RXP3PJ1ne3b-WDqJ7vH8ubStRKwyg0KrKgERSqxmiJuCm8yayxGhptG8i1LJqmtlqrrLbS00bZ3LSAmUXaWLVk8thbxz6l6Fs3xO5A8dMhuJmaO1JzEzX3Tc3BFFLHUBpmIj66Xf8Rw_Tnf6kv4tFufw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers</title><source>Springer Link</source><creator>Bouslihim, Yassine ; Kharrou, Mohamed Hakim ; Miftah, Abdelhalim ; Attou, Taha ; Bouchaou, Lhoussaine ; Chehbouni, Abdelghani</creator><creatorcontrib>Bouslihim, Yassine ; Kharrou, Mohamed Hakim ; Miftah, Abdelhalim ; Attou, Taha ; Bouchaou, Lhoussaine ; Chehbouni, Abdelghani</creatorcontrib><description>This paper evaluates the ability of two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to generate land-use maps using the recently launched Landsat-9 and Sentinel-2, two of the most used and popular satellite imagery sources. The potential to improve Landsat-9 performance was tested by pan-sharpening different bands of high-resolution data (15 m). For optimal performance of both classifiers, model tuning methods were applied by trying different combinations of key parameters of each model. This comparison was made in two different areas in Central Morocco. The results show that SVM performs slightly better than RF in classifying two images. In addition, Sentinel-2 exhibits significant multivariety classification ability compared to the pan-sharpened Landsat-9, despite the improved resolution of the latter. Lastly, the best classification performances were recorded for the combination Sentinel-2/SVM classifier. At last, machine learning algorithms prove their efficiency in classifying satellite images with high performance.</description><identifier>ISSN: 2509-8810</identifier><identifier>EISSN: 2509-8829</identifier><identifier>DOI: 10.1007/s41651-022-00130-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>cities ; Earth and Environmental Science ; Geographical Information Systems/Cartography ; Geography ; Geology ; Landscape/Regional and Urban Planning ; Remote Sensing/Photogrammetry ; towns ; Urban Geography ; Urbanism (inc. megacities</subject><ispartof>Journal of geovisualization and spatial analysis, 2022-12, Vol.6 (2), Article 35</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93</citedby><cites>FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93</cites><orcidid>0000-0002-3666-1850</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bouslihim, Yassine</creatorcontrib><creatorcontrib>Kharrou, Mohamed Hakim</creatorcontrib><creatorcontrib>Miftah, Abdelhalim</creatorcontrib><creatorcontrib>Attou, Taha</creatorcontrib><creatorcontrib>Bouchaou, Lhoussaine</creatorcontrib><creatorcontrib>Chehbouni, Abdelghani</creatorcontrib><title>Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers</title><title>Journal of geovisualization and spatial analysis</title><addtitle>J geovis spat anal</addtitle><description>This paper evaluates the ability of two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to generate land-use maps using the recently launched Landsat-9 and Sentinel-2, two of the most used and popular satellite imagery sources. The potential to improve Landsat-9 performance was tested by pan-sharpening different bands of high-resolution data (15 m). For optimal performance of both classifiers, model tuning methods were applied by trying different combinations of key parameters of each model. This comparison was made in two different areas in Central Morocco. The results show that SVM performs slightly better than RF in classifying two images. In addition, Sentinel-2 exhibits significant multivariety classification ability compared to the pan-sharpened Landsat-9, despite the improved resolution of the latter. Lastly, the best classification performances were recorded for the combination Sentinel-2/SVM classifier. At last, machine learning algorithms prove their efficiency in classifying satellite images with high performance.</description><subject>cities</subject><subject>Earth and Environmental Science</subject><subject>Geographical Information Systems/Cartography</subject><subject>Geography</subject><subject>Geology</subject><subject>Landscape/Regional and Urban Planning</subject><subject>Remote Sensing/Photogrammetry</subject><subject>towns</subject><subject>Urban Geography</subject><subject>Urbanism (inc. megacities</subject><issn>2509-8810</issn><issn>2509-8829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EElXpC3DyCxh2bSeOjyjiTwoCCXq2tolDU7VOZIcDb09CgSOnHe3OjFYfY5cIVwhgrpPGPEMBUgoAVCDghC1kBlYUhbSnfxrhnK1S2gGANEqbXC5YX_aHgWIX3vkLBZG2FAcffMMrCk2iUVg-Cf7qw9gFvxeSt338Pop18rzcU0pd29U0dn3g6zQXPVG9ncy88hTDvPh1-Zgu2FlL--RXP3PJ1ne3b-WDqJ7vH8ubStRKwyg0KrKgERSqxmiJuCm8yayxGhptG8i1LJqmtlqrrLbS00bZ3LSAmUXaWLVk8thbxz6l6Fs3xO5A8dMhuJmaO1JzEzX3Tc3BFFLHUBpmIj66Xf8Rw_Tnf6kv4tFufw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Bouslihim, Yassine</creator><creator>Kharrou, Mohamed Hakim</creator><creator>Miftah, Abdelhalim</creator><creator>Attou, Taha</creator><creator>Bouchaou, Lhoussaine</creator><creator>Chehbouni, Abdelghani</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3666-1850</orcidid></search><sort><creationdate>20221201</creationdate><title>Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers</title><author>Bouslihim, Yassine ; Kharrou, Mohamed Hakim ; Miftah, Abdelhalim ; Attou, Taha ; Bouchaou, Lhoussaine ; Chehbouni, Abdelghani</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>cities</topic><topic>Earth and Environmental Science</topic><topic>Geographical Information Systems/Cartography</topic><topic>Geography</topic><topic>Geology</topic><topic>Landscape/Regional and Urban Planning</topic><topic>Remote Sensing/Photogrammetry</topic><topic>towns</topic><topic>Urban Geography</topic><topic>Urbanism (inc. megacities</topic><toplevel>online_resources</toplevel><creatorcontrib>Bouslihim, Yassine</creatorcontrib><creatorcontrib>Kharrou, Mohamed Hakim</creatorcontrib><creatorcontrib>Miftah, Abdelhalim</creatorcontrib><creatorcontrib>Attou, Taha</creatorcontrib><creatorcontrib>Bouchaou, Lhoussaine</creatorcontrib><creatorcontrib>Chehbouni, Abdelghani</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of geovisualization and spatial analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bouslihim, Yassine</au><au>Kharrou, Mohamed Hakim</au><au>Miftah, Abdelhalim</au><au>Attou, Taha</au><au>Bouchaou, Lhoussaine</au><au>Chehbouni, Abdelghani</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers</atitle><jtitle>Journal of geovisualization and spatial analysis</jtitle><stitle>J geovis spat anal</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>6</volume><issue>2</issue><artnum>35</artnum><issn>2509-8810</issn><eissn>2509-8829</eissn><abstract>This paper evaluates the ability of two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM), to generate land-use maps using the recently launched Landsat-9 and Sentinel-2, two of the most used and popular satellite imagery sources. The potential to improve Landsat-9 performance was tested by pan-sharpening different bands of high-resolution data (15 m). For optimal performance of both classifiers, model tuning methods were applied by trying different combinations of key parameters of each model. This comparison was made in two different areas in Central Morocco. The results show that SVM performs slightly better than RF in classifying two images. In addition, Sentinel-2 exhibits significant multivariety classification ability compared to the pan-sharpened Landsat-9, despite the improved resolution of the latter. Lastly, the best classification performances were recorded for the combination Sentinel-2/SVM classifier. At last, machine learning algorithms prove their efficiency in classifying satellite images with high performance.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s41651-022-00130-0</doi><orcidid>https://orcid.org/0000-0002-3666-1850</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2509-8810
ispartof Journal of geovisualization and spatial analysis, 2022-12, Vol.6 (2), Article 35
issn 2509-8810
2509-8829
language eng
recordid cdi_crossref_primary_10_1007_s41651_022_00130_0
source Springer Link
subjects cities
Earth and Environmental Science
Geographical Information Systems/Cartography
Geography
Geology
Landscape/Regional and Urban Planning
Remote Sensing/Photogrammetry
towns
Urban Geography
Urbanism (inc. megacities
title Comparing Pan-sharpened Landsat-9 and Sentinel-2 for Land-Use Classification Using Machine Learning Classifiers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A35%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparing%20Pan-sharpened%20Landsat-9%20and%20Sentinel-2%20for%20Land-Use%20Classification%20Using%20Machine%20Learning%20Classifiers&rft.jtitle=Journal%20of%20geovisualization%20and%20spatial%20analysis&rft.au=Bouslihim,%20Yassine&rft.date=2022-12-01&rft.volume=6&rft.issue=2&rft.artnum=35&rft.issn=2509-8810&rft.eissn=2509-8829&rft_id=info:doi/10.1007/s41651-022-00130-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s41651_022_00130_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-413a90410313d74211b8e7597940d49d06428ddc94435c92eab3967f01591ab93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true