Loading…
Study on the Photolysis Route of Nano 2,2ʹ,4,4ʹ,6,6ʹ–Hexanitrostillbene by Vibrational Spectroscopy
The understanding of the photolysis process of 2,2ʹ,4,4ʹ,6,6ʹ–hexanitrostillbene (HNS, an insensitive high-energy explosive) is very important not only for enhancing the detonation performance but also for its lifetime prediction. In this work, UV–Vis light-induced photolysis of nano HNS was studied...
Saved in:
Published in: | Journal of analysis and testing 2021-09, Vol.5 (3), p.197-202 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The understanding of the photolysis process of 2,2ʹ,4,4ʹ,6,6ʹ–hexanitrostillbene (HNS, an insensitive high-energy explosive) is very important not only for enhancing the detonation performance but also for its lifetime prediction. In this work, UV–Vis light-induced photolysis of nano HNS was studied by different spectroscopic methods. Nano HNS was found to be sensitive to UV–Vis lights at 365 and 470 nm. The photolysis route of nano HNS was mostly the same as its bulk counterpart, which was likely to be the combination of the isomerization of –NO
2
to –ONO and the breaking of the C–N bond in Ar–NO
2
(Ar = Aromatic ring). In addition, the possible mechanism of UV–Vis-induced visible color change was explored for the first time. |
---|---|
ISSN: | 2096-241X 2509-4696 |
DOI: | 10.1007/s41664-021-00184-x |