Loading…

On nonlinear parabolic equations with singular lower order term

In this paper we study existence and regularity results for solution to a nonlinear and singular parabolic problem. The model is ∂ u ∂ t - div ( ( a ( x , t ) + | u | q ) ∇ u ) = f u γ in Q , u ( x , t ) = 0 on Γ , u ( x , 0 ) = u 0 ( x ) in Ω , where Ω is a bounded open subset of R N , N ≥ 2 , Q is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of elliptic and parabolic equations 2022-06, Vol.8 (1), p.49-75
Main Authors: El hadfi, Youssef, El ouardy, Mounim, Ifzarne, Aziz, Sbai, Abdelaaziz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-d75ad3c91678d87457dfbb59e3374d0ded6cef646017814d067a5a6c35ad38853
cites cdi_FETCH-LOGICAL-c291t-d75ad3c91678d87457dfbb59e3374d0ded6cef646017814d067a5a6c35ad38853
container_end_page 75
container_issue 1
container_start_page 49
container_title Journal of elliptic and parabolic equations
container_volume 8
creator El hadfi, Youssef
El ouardy, Mounim
Ifzarne, Aziz
Sbai, Abdelaaziz
description In this paper we study existence and regularity results for solution to a nonlinear and singular parabolic problem. The model is ∂ u ∂ t - div ( ( a ( x , t ) + | u | q ) ∇ u ) = f u γ in Q , u ( x , t ) = 0 on Γ , u ( x , 0 ) = u 0 ( x ) in Ω , where Ω is a bounded open subset of R N , N ≥ 2 , Q is the cylinder Ω × ( 0 , T ) , T > 0 , Γ the lateral surface ∂ Ω × ( 0 , T ) , q > 0 , γ > 0 , and f is non-negative function belonging to some Lebesgue space L m ( Q ) , m ≥ 1 and u 0 ∈ L ∞ ( Ω ) such that ∀ ω ⊂ ⊂ Ω , ∃ D ω > 0 : u 0 ≥ D ω in ω .
doi_str_mv 10.1007/s41808-021-00138-5
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s41808_021_00138_5</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s41808_021_00138_5</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d75ad3c91678d87457dfbb59e3374d0ded6cef646017814d067a5a6c35ad38853</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouKz7Bzz1D0QnSfPRk8jix8LCXvQc0iZds3STNWlZ_Pe2Vjx6mRmG9xmGB6FbAncEQN7nkihQGCjBAIQpzC_QgtJK4ApYdfk3U7hGq5wPAEAlK6WABXrYhSLE0PngTCpOJpk6dr4p3Odgeh9DLs6-_yiyD_uhGxNdPLtUxGTH2rt0vEFXremyW_32JXp_fnpbv-Lt7mWzftzihlakx1ZyY1lTESGVVbLk0rZ1zSvHmCwtWGdF41pRCiBSkXEjpOFGNGzClOJsieh8t0kx5-RafUr-aNKXJqAnC3q2oEcL-seCniA2Q3kMh71L-hCHFMY__6O-AUbgX9U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On nonlinear parabolic equations with singular lower order term</title><source>Springer Link</source><creator>El hadfi, Youssef ; El ouardy, Mounim ; Ifzarne, Aziz ; Sbai, Abdelaaziz</creator><creatorcontrib>El hadfi, Youssef ; El ouardy, Mounim ; Ifzarne, Aziz ; Sbai, Abdelaaziz</creatorcontrib><description>In this paper we study existence and regularity results for solution to a nonlinear and singular parabolic problem. The model is ∂ u ∂ t - div ( ( a ( x , t ) + | u | q ) ∇ u ) = f u γ in Q , u ( x , t ) = 0 on Γ , u ( x , 0 ) = u 0 ( x ) in Ω , where Ω is a bounded open subset of R N , N ≥ 2 , Q is the cylinder Ω × ( 0 , T ) , T &gt; 0 , Γ the lateral surface ∂ Ω × ( 0 , T ) , q &gt; 0 , γ &gt; 0 , and f is non-negative function belonging to some Lebesgue space L m ( Q ) , m ≥ 1 and u 0 ∈ L ∞ ( Ω ) such that ∀ ω ⊂ ⊂ Ω , ∃ D ω &gt; 0 : u 0 ≥ D ω in ω .</description><identifier>ISSN: 2296-9020</identifier><identifier>EISSN: 2296-9039</identifier><identifier>DOI: 10.1007/s41808-021-00138-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Journal of elliptic and parabolic equations, 2022-06, Vol.8 (1), p.49-75</ispartof><rights>Orthogonal Publisher and Springer Nature Switzerland AG 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d75ad3c91678d87457dfbb59e3374d0ded6cef646017814d067a5a6c35ad38853</citedby><cites>FETCH-LOGICAL-c291t-d75ad3c91678d87457dfbb59e3374d0ded6cef646017814d067a5a6c35ad38853</cites><orcidid>0000-0003-4483-2709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>El hadfi, Youssef</creatorcontrib><creatorcontrib>El ouardy, Mounim</creatorcontrib><creatorcontrib>Ifzarne, Aziz</creatorcontrib><creatorcontrib>Sbai, Abdelaaziz</creatorcontrib><title>On nonlinear parabolic equations with singular lower order term</title><title>Journal of elliptic and parabolic equations</title><addtitle>J Elliptic Parabol Equ</addtitle><description>In this paper we study existence and regularity results for solution to a nonlinear and singular parabolic problem. The model is ∂ u ∂ t - div ( ( a ( x , t ) + | u | q ) ∇ u ) = f u γ in Q , u ( x , t ) = 0 on Γ , u ( x , 0 ) = u 0 ( x ) in Ω , where Ω is a bounded open subset of R N , N ≥ 2 , Q is the cylinder Ω × ( 0 , T ) , T &gt; 0 , Γ the lateral surface ∂ Ω × ( 0 , T ) , q &gt; 0 , γ &gt; 0 , and f is non-negative function belonging to some Lebesgue space L m ( Q ) , m ≥ 1 and u 0 ∈ L ∞ ( Ω ) such that ∀ ω ⊂ ⊂ Ω , ∃ D ω &gt; 0 : u 0 ≥ D ω in ω .</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>2296-9020</issn><issn>2296-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouKz7Bzz1D0QnSfPRk8jix8LCXvQc0iZds3STNWlZ_Pe2Vjx6mRmG9xmGB6FbAncEQN7nkihQGCjBAIQpzC_QgtJK4ApYdfk3U7hGq5wPAEAlK6WABXrYhSLE0PngTCpOJpk6dr4p3Odgeh9DLs6-_yiyD_uhGxNdPLtUxGTH2rt0vEFXremyW_32JXp_fnpbv-Lt7mWzftzihlakx1ZyY1lTESGVVbLk0rZ1zSvHmCwtWGdF41pRCiBSkXEjpOFGNGzClOJsieh8t0kx5-RafUr-aNKXJqAnC3q2oEcL-seCniA2Q3kMh71L-hCHFMY__6O-AUbgX9U</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>El hadfi, Youssef</creator><creator>El ouardy, Mounim</creator><creator>Ifzarne, Aziz</creator><creator>Sbai, Abdelaaziz</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4483-2709</orcidid></search><sort><creationdate>202206</creationdate><title>On nonlinear parabolic equations with singular lower order term</title><author>El hadfi, Youssef ; El ouardy, Mounim ; Ifzarne, Aziz ; Sbai, Abdelaaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d75ad3c91678d87457dfbb59e3374d0ded6cef646017814d067a5a6c35ad38853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El hadfi, Youssef</creatorcontrib><creatorcontrib>El ouardy, Mounim</creatorcontrib><creatorcontrib>Ifzarne, Aziz</creatorcontrib><creatorcontrib>Sbai, Abdelaaziz</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of elliptic and parabolic equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El hadfi, Youssef</au><au>El ouardy, Mounim</au><au>Ifzarne, Aziz</au><au>Sbai, Abdelaaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On nonlinear parabolic equations with singular lower order term</atitle><jtitle>Journal of elliptic and parabolic equations</jtitle><stitle>J Elliptic Parabol Equ</stitle><date>2022-06</date><risdate>2022</risdate><volume>8</volume><issue>1</issue><spage>49</spage><epage>75</epage><pages>49-75</pages><issn>2296-9020</issn><eissn>2296-9039</eissn><abstract>In this paper we study existence and regularity results for solution to a nonlinear and singular parabolic problem. The model is ∂ u ∂ t - div ( ( a ( x , t ) + | u | q ) ∇ u ) = f u γ in Q , u ( x , t ) = 0 on Γ , u ( x , 0 ) = u 0 ( x ) in Ω , where Ω is a bounded open subset of R N , N ≥ 2 , Q is the cylinder Ω × ( 0 , T ) , T &gt; 0 , Γ the lateral surface ∂ Ω × ( 0 , T ) , q &gt; 0 , γ &gt; 0 , and f is non-negative function belonging to some Lebesgue space L m ( Q ) , m ≥ 1 and u 0 ∈ L ∞ ( Ω ) such that ∀ ω ⊂ ⊂ Ω , ∃ D ω &gt; 0 : u 0 ≥ D ω in ω .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s41808-021-00138-5</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-4483-2709</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2296-9020
ispartof Journal of elliptic and parabolic equations, 2022-06, Vol.8 (1), p.49-75
issn 2296-9020
2296-9039
language eng
recordid cdi_crossref_primary_10_1007_s41808_021_00138_5
source Springer Link
subjects Mathematics
Mathematics and Statistics
Partial Differential Equations
title On nonlinear parabolic equations with singular lower order term
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20nonlinear%20parabolic%20equations%20with%20singular%20lower%20order%20term&rft.jtitle=Journal%20of%20elliptic%20and%20parabolic%20equations&rft.au=El%20hadfi,%20Youssef&rft.date=2022-06&rft.volume=8&rft.issue=1&rft.spage=49&rft.epage=75&rft.pages=49-75&rft.issn=2296-9020&rft.eissn=2296-9039&rft_id=info:doi/10.1007/s41808-021-00138-5&rft_dat=%3Ccrossref_sprin%3E10_1007_s41808_021_00138_5%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-d75ad3c91678d87457dfbb59e3374d0ded6cef646017814d067a5a6c35ad38853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true