Loading…

Existence of positive radial solutions for nonlinear elliptic equations with gradient terms in an annulus

In this paper, we concern with the existence of positive radial solutions of the elliptic equation with nonlinear gradient term - Δ u = f ( | u | , u , x | x | · ∇ u ) , x ∈ Ω , u | ∂ Ω = 0 , where Ω = { x ∈ R n : a < | x | < b } , 0 < a < b < ∞ , n ≥ 3 , f ∈ [ a , b ] × R + × R → R +...

Full description

Saved in:
Bibliographic Details
Published in:Journal of elliptic and parabolic equations 2023-12, Vol.9 (2), p.807-829
Main Author: Gou, Haide
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c242t-c20382249712b49ecce96dfd34ba4d283d947e74a56f9616c0a7a6c2c27e2dd93
container_end_page 829
container_issue 2
container_start_page 807
container_title Journal of elliptic and parabolic equations
container_volume 9
creator Gou, Haide
description In this paper, we concern with the existence of positive radial solutions of the elliptic equation with nonlinear gradient term - Δ u = f ( | u | , u , x | x | · ∇ u ) , x ∈ Ω , u | ∂ Ω = 0 , where Ω = { x ∈ R n : a < | x | < b } , 0 < a < b < ∞ , n ≥ 3 , f ∈ [ a , b ] × R + × R → R + is continuous. Under the conditions that the nonlinearity f ( r , u , η ) may be of superlinear or sublinear growth in u and η , existence results of positive radial solutions are obtained. For the superlinear case, the growth of f in η is restricted to quadratic growth. The superlinear and the sublinear growth of the nonlinearity of f are described by inequality conditions instead of the usual upper and lower limits conditions as well as the nonlinearity is related to derivative terms. The result is obtained basing on the fixed point index theory in cones.
doi_str_mv 10.1007/s41808-023-00224-w
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s41808_023_00224_w</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s41808_023_00224_w</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-c20382249712b49ecce96dfd34ba4d283d947e74a56f9616c0a7a6c2c27e2dd93</originalsourceid><addsrcrecordid>eNp9kM9OAyEQh4nRxEb7Ap54gVUWEJajaeqfpIkXPRPKzlYaChVYq28vdY1HEzLM4fdNZj6Erlpy3RIibzJvO9I1hLKGEEp5czhBM0qVaBRh6vSvp-QczXPekpqSjEtBZsgtP10uECzgOOB9zK64D8DJ9M54nKMfi4sh4yEmHGLwLoBJGLx3--IshvfRTIGDK294c-QgFFwg7TJ2AZvjC6Mf8yU6G4zPMP_9L9Dr_fJl8disnh-eFnerxlJOS62EdfUIJVu65gqsBSX6oWd8bXhPO9YrLkFycysGJVphiZFGWGqpBNr3il0gOs21KeacYND75HYmfemW6KMvPfnS1Zf-8aUPFWITlGs4bCDpbRxTqHv-R30Dftlw4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Existence of positive radial solutions for nonlinear elliptic equations with gradient terms in an annulus</title><source>Springer Link</source><creator>Gou, Haide</creator><creatorcontrib>Gou, Haide</creatorcontrib><description>In this paper, we concern with the existence of positive radial solutions of the elliptic equation with nonlinear gradient term - Δ u = f ( | u | , u , x | x | · ∇ u ) , x ∈ Ω , u | ∂ Ω = 0 , where Ω = { x ∈ R n : a &lt; | x | &lt; b } , 0 &lt; a &lt; b &lt; ∞ , n ≥ 3 , f ∈ [ a , b ] × R + × R → R + is continuous. Under the conditions that the nonlinearity f ( r , u , η ) may be of superlinear or sublinear growth in u and η , existence results of positive radial solutions are obtained. For the superlinear case, the growth of f in η is restricted to quadratic growth. The superlinear and the sublinear growth of the nonlinearity of f are described by inequality conditions instead of the usual upper and lower limits conditions as well as the nonlinearity is related to derivative terms. The result is obtained basing on the fixed point index theory in cones.</description><identifier>ISSN: 2296-9020</identifier><identifier>EISSN: 2296-9039</identifier><identifier>DOI: 10.1007/s41808-023-00224-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Journal of elliptic and parabolic equations, 2023-12, Vol.9 (2), p.807-829</ispartof><rights>Orthogonal Publisher and Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-c20382249712b49ecce96dfd34ba4d283d947e74a56f9616c0a7a6c2c27e2dd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gou, Haide</creatorcontrib><title>Existence of positive radial solutions for nonlinear elliptic equations with gradient terms in an annulus</title><title>Journal of elliptic and parabolic equations</title><addtitle>J Elliptic Parabol Equ</addtitle><description>In this paper, we concern with the existence of positive radial solutions of the elliptic equation with nonlinear gradient term - Δ u = f ( | u | , u , x | x | · ∇ u ) , x ∈ Ω , u | ∂ Ω = 0 , where Ω = { x ∈ R n : a &lt; | x | &lt; b } , 0 &lt; a &lt; b &lt; ∞ , n ≥ 3 , f ∈ [ a , b ] × R + × R → R + is continuous. Under the conditions that the nonlinearity f ( r , u , η ) may be of superlinear or sublinear growth in u and η , existence results of positive radial solutions are obtained. For the superlinear case, the growth of f in η is restricted to quadratic growth. The superlinear and the sublinear growth of the nonlinearity of f are described by inequality conditions instead of the usual upper and lower limits conditions as well as the nonlinearity is related to derivative terms. The result is obtained basing on the fixed point index theory in cones.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>2296-9020</issn><issn>2296-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM9OAyEQh4nRxEb7Ap54gVUWEJajaeqfpIkXPRPKzlYaChVYq28vdY1HEzLM4fdNZj6Erlpy3RIibzJvO9I1hLKGEEp5czhBM0qVaBRh6vSvp-QczXPekpqSjEtBZsgtP10uECzgOOB9zK64D8DJ9M54nKMfi4sh4yEmHGLwLoBJGLx3--IshvfRTIGDK294c-QgFFwg7TJ2AZvjC6Mf8yU6G4zPMP_9L9Dr_fJl8disnh-eFnerxlJOS62EdfUIJVu65gqsBSX6oWd8bXhPO9YrLkFycysGJVphiZFGWGqpBNr3il0gOs21KeacYND75HYmfemW6KMvPfnS1Zf-8aUPFWITlGs4bCDpbRxTqHv-R30Dftlw4A</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Gou, Haide</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Existence of positive radial solutions for nonlinear elliptic equations with gradient terms in an annulus</title><author>Gou, Haide</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-c20382249712b49ecce96dfd34ba4d283d947e74a56f9616c0a7a6c2c27e2dd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gou, Haide</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of elliptic and parabolic equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gou, Haide</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence of positive radial solutions for nonlinear elliptic equations with gradient terms in an annulus</atitle><jtitle>Journal of elliptic and parabolic equations</jtitle><stitle>J Elliptic Parabol Equ</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>9</volume><issue>2</issue><spage>807</spage><epage>829</epage><pages>807-829</pages><issn>2296-9020</issn><eissn>2296-9039</eissn><abstract>In this paper, we concern with the existence of positive radial solutions of the elliptic equation with nonlinear gradient term - Δ u = f ( | u | , u , x | x | · ∇ u ) , x ∈ Ω , u | ∂ Ω = 0 , where Ω = { x ∈ R n : a &lt; | x | &lt; b } , 0 &lt; a &lt; b &lt; ∞ , n ≥ 3 , f ∈ [ a , b ] × R + × R → R + is continuous. Under the conditions that the nonlinearity f ( r , u , η ) may be of superlinear or sublinear growth in u and η , existence results of positive radial solutions are obtained. For the superlinear case, the growth of f in η is restricted to quadratic growth. The superlinear and the sublinear growth of the nonlinearity of f are described by inequality conditions instead of the usual upper and lower limits conditions as well as the nonlinearity is related to derivative terms. The result is obtained basing on the fixed point index theory in cones.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s41808-023-00224-w</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2296-9020
ispartof Journal of elliptic and parabolic equations, 2023-12, Vol.9 (2), p.807-829
issn 2296-9020
2296-9039
language eng
recordid cdi_crossref_primary_10_1007_s41808_023_00224_w
source Springer Link
subjects Mathematics
Mathematics and Statistics
Partial Differential Equations
title Existence of positive radial solutions for nonlinear elliptic equations with gradient terms in an annulus
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A19%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence%20of%20positive%20radial%20solutions%20for%20nonlinear%20elliptic%20equations%20with%20gradient%20terms%20in%20an%20annulus&rft.jtitle=Journal%20of%20elliptic%20and%20parabolic%20equations&rft.au=Gou,%20Haide&rft.date=2023-12-01&rft.volume=9&rft.issue=2&rft.spage=807&rft.epage=829&rft.pages=807-829&rft.issn=2296-9020&rft.eissn=2296-9039&rft_id=info:doi/10.1007/s41808-023-00224-w&rft_dat=%3Ccrossref_sprin%3E10_1007_s41808_023_00224_w%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-c20382249712b49ecce96dfd34ba4d283d947e74a56f9616c0a7a6c2c27e2dd93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true