Loading…
Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review
All-solid-state lithium batteries are promising next-generation energy storage devices that have gained increasing attention in the past decades due to their huge potential towards higher energy density and safety. As a key component, solid electrolytes have also attracted significant attention and...
Saved in:
Published in: | Electrochemical energy reviews 2021-06, Vol.4 (2), p.169-193 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | All-solid-state lithium batteries are promising next-generation energy storage devices that have gained increasing attention in the past decades due to their huge potential towards higher energy density and safety. As a key component, solid electrolytes have also attracted significant attention and have experienced major breakthroughs, especially in terms of Li-ion conductivity. However, the poor electrode compatibility of solid electrolytes can lead to the degradation of electrolyte/electrode interfaces, which is the major cause for failure in all-solid-state lithium batteries. To address this, this review will summarize the in-depth understanding of physical and chemical interactions between electrolytes and electrodes with a focus on the contact, charge transfer and Li dendrite formation occurring at electrolyte/electrode interfaces. Based on mechanistic analyses, this review will also briefly present corresponding strategies to enhance electrolyte/electrode interfaces through compositional modifications and structural designs. Overall, the comprehensive insights into electrolyte/electrode interfaces provided by this review can guide the future investigation of all-solid-state lithium batteries.
Graphic Abstract |
---|---|
ISSN: | 2520-8489 2520-8136 |
DOI: | 10.1007/s41918-020-00092-1 |