Loading…
Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs
Let H be a k -uniform hypergraph on n vertices with degree sequence Δ = d 1 ≥ ⋯ ≥ d n = δ . E i denotes the set of edges of H containing i . The average 2-degree of vertex i of H is m i = ∑ { i , i 2 , … i k } ∈ E i d i 2 … d i k / d i k - 1 . In this paper, in terms of m i and d i , we give some up...
Saved in:
Published in: | Bulletin of the Iranian Mathematical Society 2019-04, Vol.45 (2), p.583-591 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c279t-3b6b75e236c511a75df2150cb9a0b56b39cb35ba6240c6d9816158610aede48c3 |
container_end_page | 591 |
container_issue | 2 |
container_start_page | 583 |
container_title | Bulletin of the Iranian Mathematical Society |
container_volume | 45 |
creator | He, Jun Liu, Yan-Min Tian, Jun-Kang Liu, Xiang-Hu |
description | Let
H
be a
k
-uniform hypergraph on
n
vertices with degree sequence
Δ
=
d
1
≥
⋯
≥
d
n
=
δ
.
E
i
denotes the set of edges of
H
containing
i
. The average 2-degree of vertex
i
of
H
is
m
i
=
∑
{
i
,
i
2
,
…
i
k
}
∈
E
i
d
i
2
…
d
i
k
/
d
i
k
-
1
. In this paper, in terms of
m
i
and
d
i
, we give some upper bounds and lower bounds for the spectral radius of the signless Laplacian tensor (
Q
(
H
)
) of
H
. Some examples are given to show the tightness of these bounds. |
doi_str_mv | 10.1007/s41980-018-0150-6 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s41980_018_0150_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s41980_018_0150_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-3b6b75e236c511a75df2150cb9a0b56b39cb35ba6240c6d9816158610aede48c3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EElXpAdj5AoaZxHacJVRAK1UgESqxs2zHSYPSJLLbRW-Pq7JmMZpZ_Df6eoTcIzwgQPEYOZYKGKBKI4DJKzLDIhdMCRTX6QYsGEj4viWLGDsLnGeoFOcz8l7tTJjo83gc6kibMdDDztOqa4fex0g3ZuqN68xAq8m7QzA9_TR1d4x0bOh26BKwp6vT5EMbzLSLd-SmMX30i789J9vXl6_lim0-3tbLpw1zWVEeWG6lLYTPcukEoilE3WSpuLOlASukzUtnc2GNzDg4WZcKJQolEYyvPVcunxO8_HVhjDH4Rk-h25tw0gj67ERfnOjkRJ-daJmY7MLElB1aH_TPeAxDqvkP9AuWZ2Q4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs</title><source>Springer Nature</source><creator>He, Jun ; Liu, Yan-Min ; Tian, Jun-Kang ; Liu, Xiang-Hu</creator><creatorcontrib>He, Jun ; Liu, Yan-Min ; Tian, Jun-Kang ; Liu, Xiang-Hu</creatorcontrib><description>Let
H
be a
k
-uniform hypergraph on
n
vertices with degree sequence
Δ
=
d
1
≥
⋯
≥
d
n
=
δ
.
E
i
denotes the set of edges of
H
containing
i
. The average 2-degree of vertex
i
of
H
is
m
i
=
∑
{
i
,
i
2
,
…
i
k
}
∈
E
i
d
i
2
…
d
i
k
/
d
i
k
-
1
. In this paper, in terms of
m
i
and
d
i
, we give some upper bounds and lower bounds for the spectral radius of the signless Laplacian tensor (
Q
(
H
)
) of
H
. Some examples are given to show the tightness of these bounds.</description><identifier>ISSN: 1017-060X</identifier><identifier>EISSN: 1735-8515</identifier><identifier>DOI: 10.1007/s41980-018-0150-6</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Bulletin of the Iranian Mathematical Society, 2019-04, Vol.45 (2), p.583-591</ispartof><rights>Iranian Mathematical Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-3b6b75e236c511a75df2150cb9a0b56b39cb35ba6240c6d9816158610aede48c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Jun</creatorcontrib><creatorcontrib>Liu, Yan-Min</creatorcontrib><creatorcontrib>Tian, Jun-Kang</creatorcontrib><creatorcontrib>Liu, Xiang-Hu</creatorcontrib><title>Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs</title><title>Bulletin of the Iranian Mathematical Society</title><addtitle>Bull. Iran. Math. Soc</addtitle><description>Let
H
be a
k
-uniform hypergraph on
n
vertices with degree sequence
Δ
=
d
1
≥
⋯
≥
d
n
=
δ
.
E
i
denotes the set of edges of
H
containing
i
. The average 2-degree of vertex
i
of
H
is
m
i
=
∑
{
i
,
i
2
,
…
i
k
}
∈
E
i
d
i
2
…
d
i
k
/
d
i
k
-
1
. In this paper, in terms of
m
i
and
d
i
, we give some upper bounds and lower bounds for the spectral radius of the signless Laplacian tensor (
Q
(
H
)
) of
H
. Some examples are given to show the tightness of these bounds.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>1017-060X</issn><issn>1735-8515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EElXpAdj5AoaZxHacJVRAK1UgESqxs2zHSYPSJLLbRW-Pq7JmMZpZ_Df6eoTcIzwgQPEYOZYKGKBKI4DJKzLDIhdMCRTX6QYsGEj4viWLGDsLnGeoFOcz8l7tTJjo83gc6kibMdDDztOqa4fex0g3ZuqN68xAq8m7QzA9_TR1d4x0bOh26BKwp6vT5EMbzLSLd-SmMX30i789J9vXl6_lim0-3tbLpw1zWVEeWG6lLYTPcukEoilE3WSpuLOlASukzUtnc2GNzDg4WZcKJQolEYyvPVcunxO8_HVhjDH4Rk-h25tw0gj67ERfnOjkRJ-daJmY7MLElB1aH_TPeAxDqvkP9AuWZ2Q4</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>He, Jun</creator><creator>Liu, Yan-Min</creator><creator>Tian, Jun-Kang</creator><creator>Liu, Xiang-Hu</creator><general>Springer Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs</title><author>He, Jun ; Liu, Yan-Min ; Tian, Jun-Kang ; Liu, Xiang-Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-3b6b75e236c511a75df2150cb9a0b56b39cb35ba6240c6d9816158610aede48c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Jun</creatorcontrib><creatorcontrib>Liu, Yan-Min</creatorcontrib><creatorcontrib>Tian, Jun-Kang</creatorcontrib><creatorcontrib>Liu, Xiang-Hu</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Iranian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jun</au><au>Liu, Yan-Min</au><au>Tian, Jun-Kang</au><au>Liu, Xiang-Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs</atitle><jtitle>Bulletin of the Iranian Mathematical Society</jtitle><stitle>Bull. Iran. Math. Soc</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>45</volume><issue>2</issue><spage>583</spage><epage>591</epage><pages>583-591</pages><issn>1017-060X</issn><eissn>1735-8515</eissn><abstract>Let
H
be a
k
-uniform hypergraph on
n
vertices with degree sequence
Δ
=
d
1
≥
⋯
≥
d
n
=
δ
.
E
i
denotes the set of edges of
H
containing
i
. The average 2-degree of vertex
i
of
H
is
m
i
=
∑
{
i
,
i
2
,
…
i
k
}
∈
E
i
d
i
2
…
d
i
k
/
d
i
k
-
1
. In this paper, in terms of
m
i
and
d
i
, we give some upper bounds and lower bounds for the spectral radius of the signless Laplacian tensor (
Q
(
H
)
) of
H
. Some examples are given to show the tightness of these bounds.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s41980-018-0150-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1017-060X |
ispartof | Bulletin of the Iranian Mathematical Society, 2019-04, Vol.45 (2), p.583-591 |
issn | 1017-060X 1735-8515 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s41980_018_0150_6 |
source | Springer Nature |
subjects | Mathematics Mathematics and Statistics Original Paper |
title | Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20Bounds%20for%20the%20Signless%20Laplacian%20Spectral%20Radius%20of%20Uniform%20Hypergraphs&rft.jtitle=Bulletin%20of%20the%20Iranian%20Mathematical%20Society&rft.au=He,%20Jun&rft.date=2019-04-01&rft.volume=45&rft.issue=2&rft.spage=583&rft.epage=591&rft.pages=583-591&rft.issn=1017-060X&rft.eissn=1735-8515&rft_id=info:doi/10.1007/s41980-018-0150-6&rft_dat=%3Ccrossref_sprin%3E10_1007_s41980_018_0150_6%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-3b6b75e236c511a75df2150cb9a0b56b39cb35ba6240c6d9816158610aede48c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |