Loading…

Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs

Let H be a k -uniform hypergraph on n vertices with degree sequence Δ = d 1 ≥ ⋯ ≥ d n = δ . E i denotes the set of edges of H containing i . The average 2-degree of vertex i of H is m i = ∑ { i , i 2 , … i k } ∈ E i d i 2 … d i k / d i k - 1 . In this paper, in terms of m i and d i , we give some up...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the Iranian Mathematical Society 2019-04, Vol.45 (2), p.583-591
Main Authors: He, Jun, Liu, Yan-Min, Tian, Jun-Kang, Liu, Xiang-Hu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c279t-3b6b75e236c511a75df2150cb9a0b56b39cb35ba6240c6d9816158610aede48c3
container_end_page 591
container_issue 2
container_start_page 583
container_title Bulletin of the Iranian Mathematical Society
container_volume 45
creator He, Jun
Liu, Yan-Min
Tian, Jun-Kang
Liu, Xiang-Hu
description Let H be a k -uniform hypergraph on n vertices with degree sequence Δ = d 1 ≥ ⋯ ≥ d n = δ . E i denotes the set of edges of H containing i . The average 2-degree of vertex i of H is m i = ∑ { i , i 2 , … i k } ∈ E i d i 2 … d i k / d i k - 1 . In this paper, in terms of m i and d i , we give some upper bounds and lower bounds for the spectral radius of the signless Laplacian tensor ( Q ( H ) ) of H . Some examples are given to show the tightness of these bounds.
doi_str_mv 10.1007/s41980-018-0150-6
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s41980_018_0150_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s41980_018_0150_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-3b6b75e236c511a75df2150cb9a0b56b39cb35ba6240c6d9816158610aede48c3</originalsourceid><addsrcrecordid>eNp9kEFOwzAQRS0EElXpAdj5AoaZxHacJVRAK1UgESqxs2zHSYPSJLLbRW-Pq7JmMZpZ_Df6eoTcIzwgQPEYOZYKGKBKI4DJKzLDIhdMCRTX6QYsGEj4viWLGDsLnGeoFOcz8l7tTJjo83gc6kibMdDDztOqa4fex0g3ZuqN68xAq8m7QzA9_TR1d4x0bOh26BKwp6vT5EMbzLSLd-SmMX30i789J9vXl6_lim0-3tbLpw1zWVEeWG6lLYTPcukEoilE3WSpuLOlASukzUtnc2GNzDg4WZcKJQolEYyvPVcunxO8_HVhjDH4Rk-h25tw0gj67ERfnOjkRJ-daJmY7MLElB1aH_TPeAxDqvkP9AuWZ2Q4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs</title><source>Springer Nature</source><creator>He, Jun ; Liu, Yan-Min ; Tian, Jun-Kang ; Liu, Xiang-Hu</creator><creatorcontrib>He, Jun ; Liu, Yan-Min ; Tian, Jun-Kang ; Liu, Xiang-Hu</creatorcontrib><description>Let H be a k -uniform hypergraph on n vertices with degree sequence Δ = d 1 ≥ ⋯ ≥ d n = δ . E i denotes the set of edges of H containing i . The average 2-degree of vertex i of H is m i = ∑ { i , i 2 , … i k } ∈ E i d i 2 … d i k / d i k - 1 . In this paper, in terms of m i and d i , we give some upper bounds and lower bounds for the spectral radius of the signless Laplacian tensor ( Q ( H ) ) of H . Some examples are given to show the tightness of these bounds.</description><identifier>ISSN: 1017-060X</identifier><identifier>EISSN: 1735-8515</identifier><identifier>DOI: 10.1007/s41980-018-0150-6</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Bulletin of the Iranian Mathematical Society, 2019-04, Vol.45 (2), p.583-591</ispartof><rights>Iranian Mathematical Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-3b6b75e236c511a75df2150cb9a0b56b39cb35ba6240c6d9816158610aede48c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>He, Jun</creatorcontrib><creatorcontrib>Liu, Yan-Min</creatorcontrib><creatorcontrib>Tian, Jun-Kang</creatorcontrib><creatorcontrib>Liu, Xiang-Hu</creatorcontrib><title>Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs</title><title>Bulletin of the Iranian Mathematical Society</title><addtitle>Bull. Iran. Math. Soc</addtitle><description>Let H be a k -uniform hypergraph on n vertices with degree sequence Δ = d 1 ≥ ⋯ ≥ d n = δ . E i denotes the set of edges of H containing i . The average 2-degree of vertex i of H is m i = ∑ { i , i 2 , … i k } ∈ E i d i 2 … d i k / d i k - 1 . In this paper, in terms of m i and d i , we give some upper bounds and lower bounds for the spectral radius of the signless Laplacian tensor ( Q ( H ) ) of H . Some examples are given to show the tightness of these bounds.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>1017-060X</issn><issn>1735-8515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kEFOwzAQRS0EElXpAdj5AoaZxHacJVRAK1UgESqxs2zHSYPSJLLbRW-Pq7JmMZpZ_Df6eoTcIzwgQPEYOZYKGKBKI4DJKzLDIhdMCRTX6QYsGEj4viWLGDsLnGeoFOcz8l7tTJjo83gc6kibMdDDztOqa4fex0g3ZuqN68xAq8m7QzA9_TR1d4x0bOh26BKwp6vT5EMbzLSLd-SmMX30i789J9vXl6_lim0-3tbLpw1zWVEeWG6lLYTPcukEoilE3WSpuLOlASukzUtnc2GNzDg4WZcKJQolEYyvPVcunxO8_HVhjDH4Rk-h25tw0gj67ERfnOjkRJ-daJmY7MLElB1aH_TPeAxDqvkP9AuWZ2Q4</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>He, Jun</creator><creator>Liu, Yan-Min</creator><creator>Tian, Jun-Kang</creator><creator>Liu, Xiang-Hu</creator><general>Springer Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs</title><author>He, Jun ; Liu, Yan-Min ; Tian, Jun-Kang ; Liu, Xiang-Hu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-3b6b75e236c511a75df2150cb9a0b56b39cb35ba6240c6d9816158610aede48c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Jun</creatorcontrib><creatorcontrib>Liu, Yan-Min</creatorcontrib><creatorcontrib>Tian, Jun-Kang</creatorcontrib><creatorcontrib>Liu, Xiang-Hu</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Iranian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Jun</au><au>Liu, Yan-Min</au><au>Tian, Jun-Kang</au><au>Liu, Xiang-Hu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs</atitle><jtitle>Bulletin of the Iranian Mathematical Society</jtitle><stitle>Bull. Iran. Math. Soc</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>45</volume><issue>2</issue><spage>583</spage><epage>591</epage><pages>583-591</pages><issn>1017-060X</issn><eissn>1735-8515</eissn><abstract>Let H be a k -uniform hypergraph on n vertices with degree sequence Δ = d 1 ≥ ⋯ ≥ d n = δ . E i denotes the set of edges of H containing i . The average 2-degree of vertex i of H is m i = ∑ { i , i 2 , … i k } ∈ E i d i 2 … d i k / d i k - 1 . In this paper, in terms of m i and d i , we give some upper bounds and lower bounds for the spectral radius of the signless Laplacian tensor ( Q ( H ) ) of H . Some examples are given to show the tightness of these bounds.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s41980-018-0150-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1017-060X
ispartof Bulletin of the Iranian Mathematical Society, 2019-04, Vol.45 (2), p.583-591
issn 1017-060X
1735-8515
language eng
recordid cdi_crossref_primary_10_1007_s41980_018_0150_6
source Springer Nature
subjects Mathematics
Mathematics and Statistics
Original Paper
title Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sharp%20Bounds%20for%20the%20Signless%20Laplacian%20Spectral%20Radius%20of%20Uniform%20Hypergraphs&rft.jtitle=Bulletin%20of%20the%20Iranian%20Mathematical%20Society&rft.au=He,%20Jun&rft.date=2019-04-01&rft.volume=45&rft.issue=2&rft.spage=583&rft.epage=591&rft.pages=583-591&rft.issn=1017-060X&rft.eissn=1735-8515&rft_id=info:doi/10.1007/s41980-018-0150-6&rft_dat=%3Ccrossref_sprin%3E10_1007_s41980_018_0150_6%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c279t-3b6b75e236c511a75df2150cb9a0b56b39cb35ba6240c6d9816158610aede48c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true