Loading…

Strong Bi-skew Commutativity Preserving Maps on von Neumann Algebras

Let M be a von Neumann algebra with no central summands of type I 1 . Assume that Φ : M → M is a surjective map and Φ ( I ) is an unitary operator. It is shown that Φ is strong bi-skew commutativity preserving (that is, Φ satisfies Φ ( A ) Φ ( B ) ∗ - Φ ( B ) Φ ( A ) ∗ = A B ∗ - B A ∗ for all A , B...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the Iranian Mathematical Society 2023-04, Vol.49 (2), Article 15
Main Authors: Qi, Xiaofei, Chen, Shaobo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c281t-13dc438bbc5b251215d071a2c74d65b9690d73151dfed300471138eb9e13363
container_end_page
container_issue 2
container_start_page
container_title Bulletin of the Iranian Mathematical Society
container_volume 49
creator Qi, Xiaofei
Chen, Shaobo
description Let M be a von Neumann algebra with no central summands of type I 1 . Assume that Φ : M → M is a surjective map and Φ ( I ) is an unitary operator. It is shown that Φ is strong bi-skew commutativity preserving (that is, Φ satisfies Φ ( A ) Φ ( B ) ∗ - Φ ( B ) Φ ( A ) ∗ = A B ∗ - B A ∗ for all A , B ∈ M ) if and only if there exists a self-adjoint central operator Z ∈ M with Z 2 = I such that Φ ( A ) = Z A Φ ( I ) for all A ∈ M . The strong bi-skew commutativity preserving maps on prime algebras with involution are also characterized.
doi_str_mv 10.1007/s41980-023-00759-7
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s41980_023_00759_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s41980_023_00759_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-13dc438bbc5b251215d071a2c74d65b9690d73151dfed300471138eb9e13363</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7DKDxhm_IidZSmPIpWHVBbsLDtxq0CTVHYa1L_HENYsRjMj3TMaHUIuEa4QQF1HgYUGCozTtMqCqhMyQcUl1RLlaZoBFYUc3s_JLMbagRAMtRZiQm7XfejabXZT0_jpv7JF1zSH3vb1UPfH7DX46MNQp8CT3cesa7Mh1bM_NLZts_lu612w8YKcbewu-tlfn5L1_d3bYklXLw-Pi_mKlkxjT5FXpeDauVI6JpGhrEChZaUSVS5dkRdQKY4Sq42vOIBQiFx7V3jkPOdTwsarZehiDH5j9qFubDgaBPMjwowiTBJhfkUYlSA-QjGF260P5qM7hDZ9-R_1DTgsYDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strong Bi-skew Commutativity Preserving Maps on von Neumann Algebras</title><source>Springer Link</source><creator>Qi, Xiaofei ; Chen, Shaobo</creator><creatorcontrib>Qi, Xiaofei ; Chen, Shaobo</creatorcontrib><description>Let M be a von Neumann algebra with no central summands of type I 1 . Assume that Φ : M → M is a surjective map and Φ ( I ) is an unitary operator. It is shown that Φ is strong bi-skew commutativity preserving (that is, Φ satisfies Φ ( A ) Φ ( B ) ∗ - Φ ( B ) Φ ( A ) ∗ = A B ∗ - B A ∗ for all A , B ∈ M ) if and only if there exists a self-adjoint central operator Z ∈ M with Z 2 = I such that Φ ( A ) = Z A Φ ( I ) for all A ∈ M . The strong bi-skew commutativity preserving maps on prime algebras with involution are also characterized.</description><identifier>ISSN: 1017-060X</identifier><identifier>EISSN: 1735-8515</identifier><identifier>DOI: 10.1007/s41980-023-00759-7</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Bulletin of the Iranian Mathematical Society, 2023-04, Vol.49 (2), Article 15</ispartof><rights>The Author(s) under exclusive licence to Iranian Mathematical Society 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c281t-13dc438bbc5b251215d071a2c74d65b9690d73151dfed300471138eb9e13363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Qi, Xiaofei</creatorcontrib><creatorcontrib>Chen, Shaobo</creatorcontrib><title>Strong Bi-skew Commutativity Preserving Maps on von Neumann Algebras</title><title>Bulletin of the Iranian Mathematical Society</title><addtitle>Bull. Iran. Math. Soc</addtitle><description>Let M be a von Neumann algebra with no central summands of type I 1 . Assume that Φ : M → M is a surjective map and Φ ( I ) is an unitary operator. It is shown that Φ is strong bi-skew commutativity preserving (that is, Φ satisfies Φ ( A ) Φ ( B ) ∗ - Φ ( B ) Φ ( A ) ∗ = A B ∗ - B A ∗ for all A , B ∈ M ) if and only if there exists a self-adjoint central operator Z ∈ M with Z 2 = I such that Φ ( A ) = Z A Φ ( I ) for all A ∈ M . The strong bi-skew commutativity preserving maps on prime algebras with involution are also characterized.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>1017-060X</issn><issn>1735-8515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7DKDxhm_IidZSmPIpWHVBbsLDtxq0CTVHYa1L_HENYsRjMj3TMaHUIuEa4QQF1HgYUGCozTtMqCqhMyQcUl1RLlaZoBFYUc3s_JLMbagRAMtRZiQm7XfejabXZT0_jpv7JF1zSH3vb1UPfH7DX46MNQp8CT3cesa7Mh1bM_NLZts_lu612w8YKcbewu-tlfn5L1_d3bYklXLw-Pi_mKlkxjT5FXpeDauVI6JpGhrEChZaUSVS5dkRdQKY4Sq42vOIBQiFx7V3jkPOdTwsarZehiDH5j9qFubDgaBPMjwowiTBJhfkUYlSA-QjGF260P5qM7hDZ9-R_1DTgsYDA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Qi, Xiaofei</creator><creator>Chen, Shaobo</creator><general>Springer Nature Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Strong Bi-skew Commutativity Preserving Maps on von Neumann Algebras</title><author>Qi, Xiaofei ; Chen, Shaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-13dc438bbc5b251215d071a2c74d65b9690d73151dfed300471138eb9e13363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qi, Xiaofei</creatorcontrib><creatorcontrib>Chen, Shaobo</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Iranian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qi, Xiaofei</au><au>Chen, Shaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong Bi-skew Commutativity Preserving Maps on von Neumann Algebras</atitle><jtitle>Bulletin of the Iranian Mathematical Society</jtitle><stitle>Bull. Iran. Math. Soc</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>49</volume><issue>2</issue><artnum>15</artnum><issn>1017-060X</issn><eissn>1735-8515</eissn><abstract>Let M be a von Neumann algebra with no central summands of type I 1 . Assume that Φ : M → M is a surjective map and Φ ( I ) is an unitary operator. It is shown that Φ is strong bi-skew commutativity preserving (that is, Φ satisfies Φ ( A ) Φ ( B ) ∗ - Φ ( B ) Φ ( A ) ∗ = A B ∗ - B A ∗ for all A , B ∈ M ) if and only if there exists a self-adjoint central operator Z ∈ M with Z 2 = I such that Φ ( A ) = Z A Φ ( I ) for all A ∈ M . The strong bi-skew commutativity preserving maps on prime algebras with involution are also characterized.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s41980-023-00759-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 1017-060X
ispartof Bulletin of the Iranian Mathematical Society, 2023-04, Vol.49 (2), Article 15
issn 1017-060X
1735-8515
language eng
recordid cdi_crossref_primary_10_1007_s41980_023_00759_7
source Springer Link
subjects Mathematics
Mathematics and Statistics
Original Paper
title Strong Bi-skew Commutativity Preserving Maps on von Neumann Algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20Bi-skew%20Commutativity%20Preserving%20Maps%20on%20von%20Neumann%20Algebras&rft.jtitle=Bulletin%20of%20the%20Iranian%20Mathematical%20Society&rft.au=Qi,%20Xiaofei&rft.date=2023-04-01&rft.volume=49&rft.issue=2&rft.artnum=15&rft.issn=1017-060X&rft.eissn=1735-8515&rft_id=info:doi/10.1007/s41980-023-00759-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s41980_023_00759_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c281t-13dc438bbc5b251215d071a2c74d65b9690d73151dfed300471138eb9e13363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true