Loading…
Use of primary decomposition of polynomial ideals arising from indicator functions to enumerate orthogonal fractions
A polynomial indicator function of designs is first introduced by Fontana et al. (J Stat Plan Inference 87:149–172, 2000) for two-level cases. They give the structure of the indicator functions, especially the relation to the orthogonality of designs. These results are generalized by Aoki (J Stat Pl...
Saved in:
Published in: | Japanese journal of statistics and data science 2022-07, Vol.5 (1), p.165-179 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93 |
container_end_page | 179 |
container_issue | 1 |
container_start_page | 165 |
container_title | Japanese journal of statistics and data science |
container_volume | 5 |
creator | Aoki, Satoshi Noro, Masayuki |
description | A polynomial indicator function of designs is first introduced by Fontana et al. (J Stat Plan Inference 87:149–172, 2000) for two-level cases. They give the structure of the indicator functions, especially the relation to the orthogonality of designs. These results are generalized by Aoki (J Stat Plan Inference 203:91–105, 2019) for general multi-level cases. As an application of these results, we can enumerate all orthogonal fractional factorial designs with given size and orthogonality using computational algebraic software. For example, Aoki (2019) gives classifications of orthogonal fractions of
2
4
×
3
designs with strength 3, which is derived by simple eliminations of variables. However, the computational feasibility of this naive approach depends on the size of the problems. In fact, it is reported that the computation of orthogonal fractions of
2
4
×
3
designs with strength 2 fails to carry out in Aoki (2019). In this paper, using the theory of primary decomposition, we enumerate and classify orthogonal fractions of
2
4
×
3
designs with strength 2. We show there are 35,200 orthogonal half fractions of
2
4
×
3
designs with strength 2, classified into 63 equivalent classes. |
doi_str_mv | 10.1007/s42081-022-00149-z |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42081_022_00149_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42081_022_00149_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoSHND3SlH3A7kmVLXpbQFwS6adZC1iNViKUgOYvk66vEocvCwAzMPZeZi9AjgScCwJ8zoyBIBZRWAIR11ekGzWhDoRK8Zbd_c9Peo0XOWwCgvGacihka19ni6PA--UGlIzZWx2Efsx99DJdF3B1DHLzaYW-s2mWsks8-bLBLccA-GK_VGBN2h6DPUMZjxDYcBpvUWLzT-BM3MRTeJTUpHtCdK052ce1ztH57_V5-VKuv98_ly6rSdcPHimsFRHOjWu5M3TVclFKUklZbTq0h1DQNYQ6YUj0TfdtTwQSITphGCNvVc0QnX51izsk6eX1TEpDn6OQUnSzRyUt08lSgeoJyEYeNTXIbD6ncn_-jfgF52nUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Use of primary decomposition of polynomial ideals arising from indicator functions to enumerate orthogonal fractions</title><source>Springer Nature</source><creator>Aoki, Satoshi ; Noro, Masayuki</creator><creatorcontrib>Aoki, Satoshi ; Noro, Masayuki</creatorcontrib><description>A polynomial indicator function of designs is first introduced by Fontana et al. (J Stat Plan Inference 87:149–172, 2000) for two-level cases. They give the structure of the indicator functions, especially the relation to the orthogonality of designs. These results are generalized by Aoki (J Stat Plan Inference 203:91–105, 2019) for general multi-level cases. As an application of these results, we can enumerate all orthogonal fractional factorial designs with given size and orthogonality using computational algebraic software. For example, Aoki (2019) gives classifications of orthogonal fractions of
2
4
×
3
designs with strength 3, which is derived by simple eliminations of variables. However, the computational feasibility of this naive approach depends on the size of the problems. In fact, it is reported that the computation of orthogonal fractions of
2
4
×
3
designs with strength 2 fails to carry out in Aoki (2019). In this paper, using the theory of primary decomposition, we enumerate and classify orthogonal fractions of
2
4
×
3
designs with strength 2. We show there are 35,200 orthogonal half fractions of
2
4
×
3
designs with strength 2, classified into 63 equivalent classes.</description><identifier>ISSN: 2520-8756</identifier><identifier>EISSN: 2520-8764</identifier><identifier>DOI: 10.1007/s42081-022-00149-z</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Chemistry and Earth Sciences ; Computer Science ; Economics ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Mathematics and Statistics ; Medicine ; Original Paper ; Physics ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences</subject><ispartof>Japanese journal of statistics and data science, 2022-07, Vol.5 (1), p.165-179</ispartof><rights>The Author(s) under exclusive licence to Japanese Federation of Statistical Science Associations 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93</citedby><cites>FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aoki, Satoshi</creatorcontrib><creatorcontrib>Noro, Masayuki</creatorcontrib><title>Use of primary decomposition of polynomial ideals arising from indicator functions to enumerate orthogonal fractions</title><title>Japanese journal of statistics and data science</title><addtitle>Jpn J Stat Data Sci</addtitle><description>A polynomial indicator function of designs is first introduced by Fontana et al. (J Stat Plan Inference 87:149–172, 2000) for two-level cases. They give the structure of the indicator functions, especially the relation to the orthogonality of designs. These results are generalized by Aoki (J Stat Plan Inference 203:91–105, 2019) for general multi-level cases. As an application of these results, we can enumerate all orthogonal fractional factorial designs with given size and orthogonality using computational algebraic software. For example, Aoki (2019) gives classifications of orthogonal fractions of
2
4
×
3
designs with strength 3, which is derived by simple eliminations of variables. However, the computational feasibility of this naive approach depends on the size of the problems. In fact, it is reported that the computation of orthogonal fractions of
2
4
×
3
designs with strength 2 fails to carry out in Aoki (2019). In this paper, using the theory of primary decomposition, we enumerate and classify orthogonal fractions of
2
4
×
3
designs with strength 2. We show there are 35,200 orthogonal half fractions of
2
4
×
3
designs with strength 2, classified into 63 equivalent classes.</description><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><issn>2520-8756</issn><issn>2520-8764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoSHND3SlH3A7kmVLXpbQFwS6adZC1iNViKUgOYvk66vEocvCwAzMPZeZi9AjgScCwJ8zoyBIBZRWAIR11ekGzWhDoRK8Zbd_c9Peo0XOWwCgvGacihka19ni6PA--UGlIzZWx2Efsx99DJdF3B1DHLzaYW-s2mWsks8-bLBLccA-GK_VGBN2h6DPUMZjxDYcBpvUWLzT-BM3MRTeJTUpHtCdK052ce1ztH57_V5-VKuv98_ly6rSdcPHimsFRHOjWu5M3TVclFKUklZbTq0h1DQNYQ6YUj0TfdtTwQSITphGCNvVc0QnX51izsk6eX1TEpDn6OQUnSzRyUt08lSgeoJyEYeNTXIbD6ncn_-jfgF52nUA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Aoki, Satoshi</creator><creator>Noro, Masayuki</creator><general>Springer Nature Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Use of primary decomposition of polynomial ideals arising from indicator functions to enumerate orthogonal fractions</title><author>Aoki, Satoshi ; Noro, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoki, Satoshi</creatorcontrib><creatorcontrib>Noro, Masayuki</creatorcontrib><collection>CrossRef</collection><jtitle>Japanese journal of statistics and data science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoki, Satoshi</au><au>Noro, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of primary decomposition of polynomial ideals arising from indicator functions to enumerate orthogonal fractions</atitle><jtitle>Japanese journal of statistics and data science</jtitle><stitle>Jpn J Stat Data Sci</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>165</spage><epage>179</epage><pages>165-179</pages><issn>2520-8756</issn><eissn>2520-8764</eissn><abstract>A polynomial indicator function of designs is first introduced by Fontana et al. (J Stat Plan Inference 87:149–172, 2000) for two-level cases. They give the structure of the indicator functions, especially the relation to the orthogonality of designs. These results are generalized by Aoki (J Stat Plan Inference 203:91–105, 2019) for general multi-level cases. As an application of these results, we can enumerate all orthogonal fractional factorial designs with given size and orthogonality using computational algebraic software. For example, Aoki (2019) gives classifications of orthogonal fractions of
2
4
×
3
designs with strength 3, which is derived by simple eliminations of variables. However, the computational feasibility of this naive approach depends on the size of the problems. In fact, it is reported that the computation of orthogonal fractions of
2
4
×
3
designs with strength 2 fails to carry out in Aoki (2019). In this paper, using the theory of primary decomposition, we enumerate and classify orthogonal fractions of
2
4
×
3
designs with strength 2. We show there are 35,200 orthogonal half fractions of
2
4
×
3
designs with strength 2, classified into 63 equivalent classes.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42081-022-00149-z</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2520-8756 |
ispartof | Japanese journal of statistics and data science, 2022-07, Vol.5 (1), p.165-179 |
issn | 2520-8756 2520-8764 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s42081_022_00149_z |
source | Springer Nature |
subjects | Chemistry and Earth Sciences Computer Science Economics Finance Health Sciences Humanities Insurance Law Management Mathematics and Statistics Medicine Original Paper Physics Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs Statistics for Business Statistics for Engineering Statistics for Life Sciences Statistics for Social Sciences |
title | Use of primary decomposition of polynomial ideals arising from indicator functions to enumerate orthogonal fractions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20primary%20decomposition%20of%20polynomial%20ideals%20arising%20from%20indicator%20functions%20to%20enumerate%20orthogonal%20fractions&rft.jtitle=Japanese%20journal%20of%20statistics%20and%20data%20science&rft.au=Aoki,%20Satoshi&rft.date=2022-07-01&rft.volume=5&rft.issue=1&rft.spage=165&rft.epage=179&rft.pages=165-179&rft.issn=2520-8756&rft.eissn=2520-8764&rft_id=info:doi/10.1007/s42081-022-00149-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s42081_022_00149_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |