Loading…

Use of primary decomposition of polynomial ideals arising from indicator functions to enumerate orthogonal fractions

A polynomial indicator function of designs is first introduced by Fontana et al. (J Stat Plan Inference 87:149–172, 2000) for two-level cases. They give the structure of the indicator functions, especially the relation to the orthogonality of designs. These results are generalized by Aoki (J Stat Pl...

Full description

Saved in:
Bibliographic Details
Published in:Japanese journal of statistics and data science 2022-07, Vol.5 (1), p.165-179
Main Authors: Aoki, Satoshi, Noro, Masayuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93
cites cdi_FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93
container_end_page 179
container_issue 1
container_start_page 165
container_title Japanese journal of statistics and data science
container_volume 5
creator Aoki, Satoshi
Noro, Masayuki
description A polynomial indicator function of designs is first introduced by Fontana et al. (J Stat Plan Inference 87:149–172, 2000) for two-level cases. They give the structure of the indicator functions, especially the relation to the orthogonality of designs. These results are generalized by Aoki (J Stat Plan Inference 203:91–105, 2019) for general multi-level cases. As an application of these results, we can enumerate all orthogonal fractional factorial designs with given size and orthogonality using computational algebraic software. For example, Aoki (2019) gives classifications of orthogonal fractions of 2 4 × 3 designs with strength 3, which is derived by simple eliminations of variables. However, the computational feasibility of this naive approach depends on the size of the problems. In fact, it is reported that the computation of orthogonal fractions of 2 4 × 3 designs with strength 2 fails to carry out in Aoki (2019). In this paper, using the theory of primary decomposition, we enumerate and classify orthogonal fractions of 2 4 × 3 designs with strength 2. We show there are 35,200 orthogonal half fractions of 2 4 × 3 designs with strength 2, classified into 63 equivalent classes.
doi_str_mv 10.1007/s42081-022-00149-z
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42081_022_00149_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42081_022_00149_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoSHND3SlH3A7kmVLXpbQFwS6adZC1iNViKUgOYvk66vEocvCwAzMPZeZi9AjgScCwJ8zoyBIBZRWAIR11ekGzWhDoRK8Zbd_c9Peo0XOWwCgvGacihka19ni6PA--UGlIzZWx2Efsx99DJdF3B1DHLzaYW-s2mWsks8-bLBLccA-GK_VGBN2h6DPUMZjxDYcBpvUWLzT-BM3MRTeJTUpHtCdK052ce1ztH57_V5-VKuv98_ly6rSdcPHimsFRHOjWu5M3TVclFKUklZbTq0h1DQNYQ6YUj0TfdtTwQSITphGCNvVc0QnX51izsk6eX1TEpDn6OQUnSzRyUt08lSgeoJyEYeNTXIbD6ncn_-jfgF52nUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Use of primary decomposition of polynomial ideals arising from indicator functions to enumerate orthogonal fractions</title><source>Springer Nature</source><creator>Aoki, Satoshi ; Noro, Masayuki</creator><creatorcontrib>Aoki, Satoshi ; Noro, Masayuki</creatorcontrib><description>A polynomial indicator function of designs is first introduced by Fontana et al. (J Stat Plan Inference 87:149–172, 2000) for two-level cases. They give the structure of the indicator functions, especially the relation to the orthogonality of designs. These results are generalized by Aoki (J Stat Plan Inference 203:91–105, 2019) for general multi-level cases. As an application of these results, we can enumerate all orthogonal fractional factorial designs with given size and orthogonality using computational algebraic software. For example, Aoki (2019) gives classifications of orthogonal fractions of 2 4 × 3 designs with strength 3, which is derived by simple eliminations of variables. However, the computational feasibility of this naive approach depends on the size of the problems. In fact, it is reported that the computation of orthogonal fractions of 2 4 × 3 designs with strength 2 fails to carry out in Aoki (2019). In this paper, using the theory of primary decomposition, we enumerate and classify orthogonal fractions of 2 4 × 3 designs with strength 2. We show there are 35,200 orthogonal half fractions of 2 4 × 3 designs with strength 2, classified into 63 equivalent classes.</description><identifier>ISSN: 2520-8756</identifier><identifier>EISSN: 2520-8764</identifier><identifier>DOI: 10.1007/s42081-022-00149-z</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Chemistry and Earth Sciences ; Computer Science ; Economics ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Mathematics and Statistics ; Medicine ; Original Paper ; Physics ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences</subject><ispartof>Japanese journal of statistics and data science, 2022-07, Vol.5 (1), p.165-179</ispartof><rights>The Author(s) under exclusive licence to Japanese Federation of Statistical Science Associations 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93</citedby><cites>FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Aoki, Satoshi</creatorcontrib><creatorcontrib>Noro, Masayuki</creatorcontrib><title>Use of primary decomposition of polynomial ideals arising from indicator functions to enumerate orthogonal fractions</title><title>Japanese journal of statistics and data science</title><addtitle>Jpn J Stat Data Sci</addtitle><description>A polynomial indicator function of designs is first introduced by Fontana et al. (J Stat Plan Inference 87:149–172, 2000) for two-level cases. They give the structure of the indicator functions, especially the relation to the orthogonality of designs. These results are generalized by Aoki (J Stat Plan Inference 203:91–105, 2019) for general multi-level cases. As an application of these results, we can enumerate all orthogonal fractional factorial designs with given size and orthogonality using computational algebraic software. For example, Aoki (2019) gives classifications of orthogonal fractions of 2 4 × 3 designs with strength 3, which is derived by simple eliminations of variables. However, the computational feasibility of this naive approach depends on the size of the problems. In fact, it is reported that the computation of orthogonal fractions of 2 4 × 3 designs with strength 2 fails to carry out in Aoki (2019). In this paper, using the theory of primary decomposition, we enumerate and classify orthogonal fractions of 2 4 × 3 designs with strength 2. We show there are 35,200 orthogonal half fractions of 2 4 × 3 designs with strength 2, classified into 63 equivalent classes.</description><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><issn>2520-8756</issn><issn>2520-8764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoSHND3SlH3A7kmVLXpbQFwS6adZC1iNViKUgOYvk66vEocvCwAzMPZeZi9AjgScCwJ8zoyBIBZRWAIR11ekGzWhDoRK8Zbd_c9Peo0XOWwCgvGacihka19ni6PA--UGlIzZWx2Efsx99DJdF3B1DHLzaYW-s2mWsks8-bLBLccA-GK_VGBN2h6DPUMZjxDYcBpvUWLzT-BM3MRTeJTUpHtCdK052ce1ztH57_V5-VKuv98_ly6rSdcPHimsFRHOjWu5M3TVclFKUklZbTq0h1DQNYQ6YUj0TfdtTwQSITphGCNvVc0QnX51izsk6eX1TEpDn6OQUnSzRyUt08lSgeoJyEYeNTXIbD6ncn_-jfgF52nUA</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Aoki, Satoshi</creator><creator>Noro, Masayuki</creator><general>Springer Nature Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220701</creationdate><title>Use of primary decomposition of polynomial ideals arising from indicator functions to enumerate orthogonal fractions</title><author>Aoki, Satoshi ; Noro, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aoki, Satoshi</creatorcontrib><creatorcontrib>Noro, Masayuki</creatorcontrib><collection>CrossRef</collection><jtitle>Japanese journal of statistics and data science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aoki, Satoshi</au><au>Noro, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of primary decomposition of polynomial ideals arising from indicator functions to enumerate orthogonal fractions</atitle><jtitle>Japanese journal of statistics and data science</jtitle><stitle>Jpn J Stat Data Sci</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>5</volume><issue>1</issue><spage>165</spage><epage>179</epage><pages>165-179</pages><issn>2520-8756</issn><eissn>2520-8764</eissn><abstract>A polynomial indicator function of designs is first introduced by Fontana et al. (J Stat Plan Inference 87:149–172, 2000) for two-level cases. They give the structure of the indicator functions, especially the relation to the orthogonality of designs. These results are generalized by Aoki (J Stat Plan Inference 203:91–105, 2019) for general multi-level cases. As an application of these results, we can enumerate all orthogonal fractional factorial designs with given size and orthogonality using computational algebraic software. For example, Aoki (2019) gives classifications of orthogonal fractions of 2 4 × 3 designs with strength 3, which is derived by simple eliminations of variables. However, the computational feasibility of this naive approach depends on the size of the problems. In fact, it is reported that the computation of orthogonal fractions of 2 4 × 3 designs with strength 2 fails to carry out in Aoki (2019). In this paper, using the theory of primary decomposition, we enumerate and classify orthogonal fractions of 2 4 × 3 designs with strength 2. We show there are 35,200 orthogonal half fractions of 2 4 × 3 designs with strength 2, classified into 63 equivalent classes.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42081-022-00149-z</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2520-8756
ispartof Japanese journal of statistics and data science, 2022-07, Vol.5 (1), p.165-179
issn 2520-8756
2520-8764
language eng
recordid cdi_crossref_primary_10_1007_s42081_022_00149_z
source Springer Nature
subjects Chemistry and Earth Sciences
Computer Science
Economics
Finance
Health Sciences
Humanities
Insurance
Law
Management
Mathematics and Statistics
Medicine
Original Paper
Physics
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Statistics for Business
Statistics for Engineering
Statistics for Life Sciences
Statistics for Social Sciences
title Use of primary decomposition of polynomial ideals arising from indicator functions to enumerate orthogonal fractions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20primary%20decomposition%20of%20polynomial%20ideals%20arising%20from%20indicator%20functions%20to%20enumerate%20orthogonal%20fractions&rft.jtitle=Japanese%20journal%20of%20statistics%20and%20data%20science&rft.au=Aoki,%20Satoshi&rft.date=2022-07-01&rft.volume=5&rft.issue=1&rft.spage=165&rft.epage=179&rft.pages=165-179&rft.issn=2520-8756&rft.eissn=2520-8764&rft_id=info:doi/10.1007/s42081-022-00149-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s42081_022_00149_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-7ca01c7da67fd39578578a2216ce72ed12d5514f04aab48b6b28480898d588e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true