Loading…

Confidence interval for normal means in meta-analysis based on a pretest estimator

Meta-analysis is a statistical method to summarize quantitative results from a set of published studies. Recently, a frequentist estimator was proposed for individual studies’ means in terms of the pretest (preliminary test) estimator. However, the confidence interval has not been considered yet for...

Full description

Saved in:
Bibliographic Details
Published in:Japanese journal of statistics and data science 2024-06, Vol.7 (1), p.537-568
Main Authors: Taketomi, Nanami, Chang, Yuan-Tsung, Konno, Yoshihiko, Mori, Mihoko, Emura, Takeshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-904bed23cd0209970bf51efd5a55c2118abf5086095b420c2552f756fe3997d23
cites cdi_FETCH-LOGICAL-c291t-904bed23cd0209970bf51efd5a55c2118abf5086095b420c2552f756fe3997d23
container_end_page 568
container_issue 1
container_start_page 537
container_title Japanese journal of statistics and data science
container_volume 7
creator Taketomi, Nanami
Chang, Yuan-Tsung
Konno, Yoshihiko
Mori, Mihoko
Emura, Takeshi
description Meta-analysis is a statistical method to summarize quantitative results from a set of published studies. Recently, a frequentist estimator was proposed for individual studies’ means in terms of the pretest (preliminary test) estimator. However, the confidence interval has not been considered yet for the pretest estimator for meta-analysis. In this paper, a novel approach to construct a CI is considered based on the pretest estimator for meta-analysis. By pivoting the cumulative distribution function of the pretest estimator, we define an explicit formula of the CI. Furthermore, we show that the coverage probability of the CI controls the nominal confidence level both theoretically and numerically. To facilitate the proposed estimator and CI, we have implemented the computational tools in the R package “ meta.shrinkage ”. Finally, three datasets are analyzed to illustrate the proposed CI in real meta-analyses. The R code to produce all the numerical results of the paper is given in Supplementary Materials.
doi_str_mv 10.1007/s42081-023-00221-2
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42081_023_00221_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42081_023_00221_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-904bed23cd0209970bf51efd5a55c2118abf5086095b420c2552f756fe3997d23</originalsourceid><addsrcrecordid>eNp9UNtKAzEQDaJgqf0Bn_ID0cnsZi-PUrxBQRB9DtndRLZsk5JZhf69Uys--jDMYeacYc4R4lrDjQaob6lEaLQCLBQAolZ4JhZoEFRTV-X5HzbVpVgRbYFZdVHW2CzE6zrFMA4-9l6Ocfb5y00ypCxjyjuGO-8i8YbB7JSLbjrQSLJz5AeZonRyn_3saZZc487NKV-Ji-Am8qvfvhTvD_dv6ye1eXl8Xt9tVI-tnlULZecHLPoBENq2hi4Y7cNgnDE9at04HkBTQWs6NtijMRjYQ_AFs1m4FHi62-dElH2w-8wf5IPVYI_B2FMwloOxP8HYo6g4iYjJ8cNnu02fmW3Rf6pvX9Vl4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Confidence interval for normal means in meta-analysis based on a pretest estimator</title><source>Springer Nature</source><creator>Taketomi, Nanami ; Chang, Yuan-Tsung ; Konno, Yoshihiko ; Mori, Mihoko ; Emura, Takeshi</creator><creatorcontrib>Taketomi, Nanami ; Chang, Yuan-Tsung ; Konno, Yoshihiko ; Mori, Mihoko ; Emura, Takeshi</creatorcontrib><description>Meta-analysis is a statistical method to summarize quantitative results from a set of published studies. Recently, a frequentist estimator was proposed for individual studies’ means in terms of the pretest (preliminary test) estimator. However, the confidence interval has not been considered yet for the pretest estimator for meta-analysis. In this paper, a novel approach to construct a CI is considered based on the pretest estimator for meta-analysis. By pivoting the cumulative distribution function of the pretest estimator, we define an explicit formula of the CI. Furthermore, we show that the coverage probability of the CI controls the nominal confidence level both theoretically and numerically. To facilitate the proposed estimator and CI, we have implemented the computational tools in the R package “ meta.shrinkage ”. Finally, three datasets are analyzed to illustrate the proposed CI in real meta-analyses. The R code to produce all the numerical results of the paper is given in Supplementary Materials.</description><identifier>ISSN: 2520-8756</identifier><identifier>EISSN: 2520-8764</identifier><identifier>DOI: 10.1007/s42081-023-00221-2</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Chemistry and Earth Sciences ; Computer Science ; Economics ; Finance ; Health Sciences ; Humanities ; Insurance ; Law ; Management ; Mathematics and Statistics ; Medicine ; Original Paper ; Physics ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs ; Statistics for Business ; Statistics for Engineering ; Statistics for Life Sciences ; Statistics for Social Sciences</subject><ispartof>Japanese journal of statistics and data science, 2024-06, Vol.7 (1), p.537-568</ispartof><rights>The Author(s) under exclusive licence to Japanese Federation of Statistical Science Associations 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-904bed23cd0209970bf51efd5a55c2118abf5086095b420c2552f756fe3997d23</citedby><cites>FETCH-LOGICAL-c291t-904bed23cd0209970bf51efd5a55c2118abf5086095b420c2552f756fe3997d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Taketomi, Nanami</creatorcontrib><creatorcontrib>Chang, Yuan-Tsung</creatorcontrib><creatorcontrib>Konno, Yoshihiko</creatorcontrib><creatorcontrib>Mori, Mihoko</creatorcontrib><creatorcontrib>Emura, Takeshi</creatorcontrib><title>Confidence interval for normal means in meta-analysis based on a pretest estimator</title><title>Japanese journal of statistics and data science</title><addtitle>Jpn J Stat Data Sci</addtitle><description>Meta-analysis is a statistical method to summarize quantitative results from a set of published studies. Recently, a frequentist estimator was proposed for individual studies’ means in terms of the pretest (preliminary test) estimator. However, the confidence interval has not been considered yet for the pretest estimator for meta-analysis. In this paper, a novel approach to construct a CI is considered based on the pretest estimator for meta-analysis. By pivoting the cumulative distribution function of the pretest estimator, we define an explicit formula of the CI. Furthermore, we show that the coverage probability of the CI controls the nominal confidence level both theoretically and numerically. To facilitate the proposed estimator and CI, we have implemented the computational tools in the R package “ meta.shrinkage ”. Finally, three datasets are analyzed to illustrate the proposed CI in real meta-analyses. The R code to produce all the numerical results of the paper is given in Supplementary Materials.</description><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Economics</subject><subject>Finance</subject><subject>Health Sciences</subject><subject>Humanities</subject><subject>Insurance</subject><subject>Law</subject><subject>Management</subject><subject>Mathematics and Statistics</subject><subject>Medicine</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><subject>Statistics for Business</subject><subject>Statistics for Engineering</subject><subject>Statistics for Life Sciences</subject><subject>Statistics for Social Sciences</subject><issn>2520-8756</issn><issn>2520-8764</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UNtKAzEQDaJgqf0Bn_ID0cnsZi-PUrxBQRB9DtndRLZsk5JZhf69Uys--jDMYeacYc4R4lrDjQaob6lEaLQCLBQAolZ4JhZoEFRTV-X5HzbVpVgRbYFZdVHW2CzE6zrFMA4-9l6Ocfb5y00ypCxjyjuGO-8i8YbB7JSLbjrQSLJz5AeZonRyn_3saZZc487NKV-Ji-Am8qvfvhTvD_dv6ye1eXl8Xt9tVI-tnlULZecHLPoBENq2hi4Y7cNgnDE9at04HkBTQWs6NtijMRjYQ_AFs1m4FHi62-dElH2w-8wf5IPVYI_B2FMwloOxP8HYo6g4iYjJ8cNnu02fmW3Rf6pvX9Vl4A</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Taketomi, Nanami</creator><creator>Chang, Yuan-Tsung</creator><creator>Konno, Yoshihiko</creator><creator>Mori, Mihoko</creator><creator>Emura, Takeshi</creator><general>Springer Nature Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240601</creationdate><title>Confidence interval for normal means in meta-analysis based on a pretest estimator</title><author>Taketomi, Nanami ; Chang, Yuan-Tsung ; Konno, Yoshihiko ; Mori, Mihoko ; Emura, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-904bed23cd0209970bf51efd5a55c2118abf5086095b420c2552f756fe3997d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Economics</topic><topic>Finance</topic><topic>Health Sciences</topic><topic>Humanities</topic><topic>Insurance</topic><topic>Law</topic><topic>Management</topic><topic>Mathematics and Statistics</topic><topic>Medicine</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><topic>Statistics for Business</topic><topic>Statistics for Engineering</topic><topic>Statistics for Life Sciences</topic><topic>Statistics for Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taketomi, Nanami</creatorcontrib><creatorcontrib>Chang, Yuan-Tsung</creatorcontrib><creatorcontrib>Konno, Yoshihiko</creatorcontrib><creatorcontrib>Mori, Mihoko</creatorcontrib><creatorcontrib>Emura, Takeshi</creatorcontrib><collection>CrossRef</collection><jtitle>Japanese journal of statistics and data science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taketomi, Nanami</au><au>Chang, Yuan-Tsung</au><au>Konno, Yoshihiko</au><au>Mori, Mihoko</au><au>Emura, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence interval for normal means in meta-analysis based on a pretest estimator</atitle><jtitle>Japanese journal of statistics and data science</jtitle><stitle>Jpn J Stat Data Sci</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>7</volume><issue>1</issue><spage>537</spage><epage>568</epage><pages>537-568</pages><issn>2520-8756</issn><eissn>2520-8764</eissn><abstract>Meta-analysis is a statistical method to summarize quantitative results from a set of published studies. Recently, a frequentist estimator was proposed for individual studies’ means in terms of the pretest (preliminary test) estimator. However, the confidence interval has not been considered yet for the pretest estimator for meta-analysis. In this paper, a novel approach to construct a CI is considered based on the pretest estimator for meta-analysis. By pivoting the cumulative distribution function of the pretest estimator, we define an explicit formula of the CI. Furthermore, we show that the coverage probability of the CI controls the nominal confidence level both theoretically and numerically. To facilitate the proposed estimator and CI, we have implemented the computational tools in the R package “ meta.shrinkage ”. Finally, three datasets are analyzed to illustrate the proposed CI in real meta-analyses. The R code to produce all the numerical results of the paper is given in Supplementary Materials.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42081-023-00221-2</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2520-8756
ispartof Japanese journal of statistics and data science, 2024-06, Vol.7 (1), p.537-568
issn 2520-8756
2520-8764
language eng
recordid cdi_crossref_primary_10_1007_s42081_023_00221_2
source Springer Nature
subjects Chemistry and Earth Sciences
Computer Science
Economics
Finance
Health Sciences
Humanities
Insurance
Law
Management
Mathematics and Statistics
Medicine
Original Paper
Physics
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Statistics for Business
Statistics for Engineering
Statistics for Life Sciences
Statistics for Social Sciences
title Confidence interval for normal means in meta-analysis based on a pretest estimator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T18%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20interval%20for%20normal%20means%20in%20meta-analysis%20based%20on%20a%20pretest%20estimator&rft.jtitle=Japanese%20journal%20of%20statistics%20and%20data%20science&rft.au=Taketomi,%20Nanami&rft.date=2024-06-01&rft.volume=7&rft.issue=1&rft.spage=537&rft.epage=568&rft.pages=537-568&rft.issn=2520-8756&rft.eissn=2520-8764&rft_id=info:doi/10.1007/s42081-023-00221-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s42081_023_00221_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-904bed23cd0209970bf51efd5a55c2118abf5086095b420c2552f756fe3997d23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true