Loading…

Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics

A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial differential operators where the region of integration is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of peridynamics and nonlocal modeling (Online) 2019-10, Vol.1 (2), p.122-130
Main Authors: Lipton, Robert P., Lehoucq, Richard B., Jha, Prashant K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53
cites cdi_FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53
container_end_page 130
container_issue 2
container_start_page 122
container_title Journal of peridynamics and nonlocal modeling (Online)
container_volume 1
creator Lipton, Robert P.
Lehoucq, Richard B.
Jha, Prashant K.
description A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial differential operators where the region of integration is over finite domain. The force interaction is derived from a novel nonconvex strain energy density function, resulting in a nonmonotonic material model. The resulting equation of motion is proved to be mathematically well-posed. The model has the capacity to simulate nucleation and growth of multiple, mutually interacting dynamic fractures. In the limit of zero region of integration, the model reproduces the classic Griffith model of brittle fracture. The simplicity of the formulation avoids the need for supplemental kinetic relations that dictate crack growth or the need for an explicit damage evolution law.
doi_str_mv 10.1007/s42102-019-00010-0
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42102_019_00010_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42102_019_00010_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWGpfwNW8QPQmmUxmllJaFUrdKLgL-dUp6aQkM2rf3rEjLl3d78J3LpeD0DWBGwIgbnNJCVAMpMEAQADDGZpRTimuG1Gf_-Xq9RItct6NJSpYKap6htbLuD8E91WskzL9kFyxHUxwqm9jV6jOFquPGIbT9tn278U2diEaFYpVULmP9tipfWvyFbrwKmS3-J1z9LJePS8f8Obp_nF5t8GGcgDMalsDb5y3pKqoUdpzUMxob732wEtNgTDOvROqKomuRVMKZktwVhOhHWdzRKe7JsWck_PykNq9SkdJQP7IkJMMOcqQJxkSRohNUB7L3ZtLcheH1I1__kd9A6VyYrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics</title><source>Springer Nature</source><creator>Lipton, Robert P. ; Lehoucq, Richard B. ; Jha, Prashant K.</creator><creatorcontrib>Lipton, Robert P. ; Lehoucq, Richard B. ; Jha, Prashant K.</creatorcontrib><description>A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial differential operators where the region of integration is over finite domain. The force interaction is derived from a novel nonconvex strain energy density function, resulting in a nonmonotonic material model. The resulting equation of motion is proved to be mathematically well-posed. The model has the capacity to simulate nucleation and growth of multiple, mutually interacting dynamic fractures. In the limit of zero region of integration, the model reproduces the classic Griffith model of brittle fracture. The simplicity of the formulation avoids the need for supplemental kinetic relations that dictate crack growth or the need for an explicit damage evolution law.</description><identifier>ISSN: 2522-896X</identifier><identifier>EISSN: 2522-8978</identifier><identifier>DOI: 10.1007/s42102-019-00010-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Characterization and Evaluation of Materials ; Computational Science and Engineering ; Engineering ; Original Articles ; Solid Mechanics</subject><ispartof>Journal of peridynamics and nonlocal modeling (Online), 2019-10, Vol.1 (2), p.122-130</ispartof><rights>Springer Nature Switzerland AG 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53</citedby><cites>FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53</cites><orcidid>0000-0002-1382-3204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lipton, Robert P.</creatorcontrib><creatorcontrib>Lehoucq, Richard B.</creatorcontrib><creatorcontrib>Jha, Prashant K.</creatorcontrib><title>Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics</title><title>Journal of peridynamics and nonlocal modeling (Online)</title><addtitle>J Peridyn Nonlocal Model</addtitle><description>A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial differential operators where the region of integration is over finite domain. The force interaction is derived from a novel nonconvex strain energy density function, resulting in a nonmonotonic material model. The resulting equation of motion is proved to be mathematically well-posed. The model has the capacity to simulate nucleation and growth of multiple, mutually interacting dynamic fractures. In the limit of zero region of integration, the model reproduces the classic Griffith model of brittle fracture. The simplicity of the formulation avoids the need for supplemental kinetic relations that dictate crack growth or the need for an explicit damage evolution law.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computational Science and Engineering</subject><subject>Engineering</subject><subject>Original Articles</subject><subject>Solid Mechanics</subject><issn>2522-896X</issn><issn>2522-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWGpfwNW8QPQmmUxmllJaFUrdKLgL-dUp6aQkM2rf3rEjLl3d78J3LpeD0DWBGwIgbnNJCVAMpMEAQADDGZpRTimuG1Gf_-Xq9RItct6NJSpYKap6htbLuD8E91WskzL9kFyxHUxwqm9jV6jOFquPGIbT9tn278U2diEaFYpVULmP9tipfWvyFbrwKmS3-J1z9LJePS8f8Obp_nF5t8GGcgDMalsDb5y3pKqoUdpzUMxob732wEtNgTDOvROqKomuRVMKZktwVhOhHWdzRKe7JsWck_PykNq9SkdJQP7IkJMMOcqQJxkSRohNUB7L3ZtLcheH1I1__kd9A6VyYrI</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Lipton, Robert P.</creator><creator>Lehoucq, Richard B.</creator><creator>Jha, Prashant K.</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1382-3204</orcidid></search><sort><creationdate>20191001</creationdate><title>Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics</title><author>Lipton, Robert P. ; Lehoucq, Richard B. ; Jha, Prashant K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computational Science and Engineering</topic><topic>Engineering</topic><topic>Original Articles</topic><topic>Solid Mechanics</topic><toplevel>online_resources</toplevel><creatorcontrib>Lipton, Robert P.</creatorcontrib><creatorcontrib>Lehoucq, Richard B.</creatorcontrib><creatorcontrib>Jha, Prashant K.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of peridynamics and nonlocal modeling (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lipton, Robert P.</au><au>Lehoucq, Richard B.</au><au>Jha, Prashant K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics</atitle><jtitle>Journal of peridynamics and nonlocal modeling (Online)</jtitle><stitle>J Peridyn Nonlocal Model</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>1</volume><issue>2</issue><spage>122</spage><epage>130</epage><pages>122-130</pages><issn>2522-896X</issn><eissn>2522-8978</eissn><abstract>A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial differential operators where the region of integration is over finite domain. The force interaction is derived from a novel nonconvex strain energy density function, resulting in a nonmonotonic material model. The resulting equation of motion is proved to be mathematically well-posed. The model has the capacity to simulate nucleation and growth of multiple, mutually interacting dynamic fractures. In the limit of zero region of integration, the model reproduces the classic Griffith model of brittle fracture. The simplicity of the formulation avoids the need for supplemental kinetic relations that dictate crack growth or the need for an explicit damage evolution law.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42102-019-00010-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1382-3204</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-896X
ispartof Journal of peridynamics and nonlocal modeling (Online), 2019-10, Vol.1 (2), p.122-130
issn 2522-896X
2522-8978
language eng
recordid cdi_crossref_primary_10_1007_s42102_019_00010_0
source Springer Nature
subjects Characterization and Evaluation of Materials
Computational Science and Engineering
Engineering
Original Articles
Solid Mechanics
title Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Fracture%20Nucleation%20and%20Evolution%20with%20Nonlocal%20Elastodynamics&rft.jtitle=Journal%20of%20peridynamics%20and%20nonlocal%20modeling%20(Online)&rft.au=Lipton,%20Robert%20P.&rft.date=2019-10-01&rft.volume=1&rft.issue=2&rft.spage=122&rft.epage=130&rft.pages=122-130&rft.issn=2522-896X&rft.eissn=2522-8978&rft_id=info:doi/10.1007/s42102-019-00010-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s42102_019_00010_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true