Loading…
Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics
A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial differential operators where the region of integration is...
Saved in:
Published in: | Journal of peridynamics and nonlocal modeling (Online) 2019-10, Vol.1 (2), p.122-130 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53 |
---|---|
cites | cdi_FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53 |
container_end_page | 130 |
container_issue | 2 |
container_start_page | 122 |
container_title | Journal of peridynamics and nonlocal modeling (Online) |
container_volume | 1 |
creator | Lipton, Robert P. Lehoucq, Richard B. Jha, Prashant K. |
description | A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial differential operators where the region of integration is over finite domain. The force interaction is derived from a novel nonconvex strain energy density function, resulting in a nonmonotonic material model. The resulting equation of motion is proved to be mathematically well-posed. The model has the capacity to simulate nucleation and growth of multiple, mutually interacting dynamic fractures. In the limit of zero region of integration, the model reproduces the classic Griffith model of brittle fracture. The simplicity of the formulation avoids the need for supplemental kinetic relations that dictate crack growth or the need for an explicit damage evolution law. |
doi_str_mv | 10.1007/s42102-019-00010-0 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42102_019_00010_0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42102_019_00010_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWGpfwNW8QPQmmUxmllJaFUrdKLgL-dUp6aQkM2rf3rEjLl3d78J3LpeD0DWBGwIgbnNJCVAMpMEAQADDGZpRTimuG1Gf_-Xq9RItct6NJSpYKap6htbLuD8E91WskzL9kFyxHUxwqm9jV6jOFquPGIbT9tn278U2diEaFYpVULmP9tipfWvyFbrwKmS3-J1z9LJePS8f8Obp_nF5t8GGcgDMalsDb5y3pKqoUdpzUMxob732wEtNgTDOvROqKomuRVMKZktwVhOhHWdzRKe7JsWck_PykNq9SkdJQP7IkJMMOcqQJxkSRohNUB7L3ZtLcheH1I1__kd9A6VyYrI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics</title><source>Springer Nature</source><creator>Lipton, Robert P. ; Lehoucq, Richard B. ; Jha, Prashant K.</creator><creatorcontrib>Lipton, Robert P. ; Lehoucq, Richard B. ; Jha, Prashant K.</creatorcontrib><description>A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial differential operators where the region of integration is over finite domain. The force interaction is derived from a novel nonconvex strain energy density function, resulting in a nonmonotonic material model. The resulting equation of motion is proved to be mathematically well-posed. The model has the capacity to simulate nucleation and growth of multiple, mutually interacting dynamic fractures. In the limit of zero region of integration, the model reproduces the classic Griffith model of brittle fracture. The simplicity of the formulation avoids the need for supplemental kinetic relations that dictate crack growth or the need for an explicit damage evolution law.</description><identifier>ISSN: 2522-896X</identifier><identifier>EISSN: 2522-8978</identifier><identifier>DOI: 10.1007/s42102-019-00010-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Characterization and Evaluation of Materials ; Computational Science and Engineering ; Engineering ; Original Articles ; Solid Mechanics</subject><ispartof>Journal of peridynamics and nonlocal modeling (Online), 2019-10, Vol.1 (2), p.122-130</ispartof><rights>Springer Nature Switzerland AG 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53</citedby><cites>FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53</cites><orcidid>0000-0002-1382-3204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lipton, Robert P.</creatorcontrib><creatorcontrib>Lehoucq, Richard B.</creatorcontrib><creatorcontrib>Jha, Prashant K.</creatorcontrib><title>Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics</title><title>Journal of peridynamics and nonlocal modeling (Online)</title><addtitle>J Peridyn Nonlocal Model</addtitle><description>A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial differential operators where the region of integration is over finite domain. The force interaction is derived from a novel nonconvex strain energy density function, resulting in a nonmonotonic material model. The resulting equation of motion is proved to be mathematically well-posed. The model has the capacity to simulate nucleation and growth of multiple, mutually interacting dynamic fractures. In the limit of zero region of integration, the model reproduces the classic Griffith model of brittle fracture. The simplicity of the formulation avoids the need for supplemental kinetic relations that dictate crack growth or the need for an explicit damage evolution law.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computational Science and Engineering</subject><subject>Engineering</subject><subject>Original Articles</subject><subject>Solid Mechanics</subject><issn>2522-896X</issn><issn>2522-8978</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWGpfwNW8QPQmmUxmllJaFUrdKLgL-dUp6aQkM2rf3rEjLl3d78J3LpeD0DWBGwIgbnNJCVAMpMEAQADDGZpRTimuG1Gf_-Xq9RItct6NJSpYKap6htbLuD8E91WskzL9kFyxHUxwqm9jV6jOFquPGIbT9tn278U2diEaFYpVULmP9tipfWvyFbrwKmS3-J1z9LJePS8f8Obp_nF5t8GGcgDMalsDb5y3pKqoUdpzUMxob732wEtNgTDOvROqKomuRVMKZktwVhOhHWdzRKe7JsWck_PykNq9SkdJQP7IkJMMOcqQJxkSRohNUB7L3ZtLcheH1I1__kd9A6VyYrI</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Lipton, Robert P.</creator><creator>Lehoucq, Richard B.</creator><creator>Jha, Prashant K.</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1382-3204</orcidid></search><sort><creationdate>20191001</creationdate><title>Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics</title><author>Lipton, Robert P. ; Lehoucq, Richard B. ; Jha, Prashant K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computational Science and Engineering</topic><topic>Engineering</topic><topic>Original Articles</topic><topic>Solid Mechanics</topic><toplevel>online_resources</toplevel><creatorcontrib>Lipton, Robert P.</creatorcontrib><creatorcontrib>Lehoucq, Richard B.</creatorcontrib><creatorcontrib>Jha, Prashant K.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of peridynamics and nonlocal modeling (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lipton, Robert P.</au><au>Lehoucq, Richard B.</au><au>Jha, Prashant K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics</atitle><jtitle>Journal of peridynamics and nonlocal modeling (Online)</jtitle><stitle>J Peridyn Nonlocal Model</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>1</volume><issue>2</issue><spage>122</spage><epage>130</epage><pages>122-130</pages><issn>2522-896X</issn><eissn>2522-8978</eissn><abstract>A mechanical model is introduced for predicting the initiation and evolution of complex fracture patterns without the need for a damage variable or law. The model, a continuum variant of Newton’s second law, uses integral rather than partial differential operators where the region of integration is over finite domain. The force interaction is derived from a novel nonconvex strain energy density function, resulting in a nonmonotonic material model. The resulting equation of motion is proved to be mathematically well-posed. The model has the capacity to simulate nucleation and growth of multiple, mutually interacting dynamic fractures. In the limit of zero region of integration, the model reproduces the classic Griffith model of brittle fracture. The simplicity of the formulation avoids the need for supplemental kinetic relations that dictate crack growth or the need for an explicit damage evolution law.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42102-019-00010-0</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1382-3204</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-896X |
ispartof | Journal of peridynamics and nonlocal modeling (Online), 2019-10, Vol.1 (2), p.122-130 |
issn | 2522-896X 2522-8978 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s42102_019_00010_0 |
source | Springer Nature |
subjects | Characterization and Evaluation of Materials Computational Science and Engineering Engineering Original Articles Solid Mechanics |
title | Complex Fracture Nucleation and Evolution with Nonlocal Elastodynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T00%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20Fracture%20Nucleation%20and%20Evolution%20with%20Nonlocal%20Elastodynamics&rft.jtitle=Journal%20of%20peridynamics%20and%20nonlocal%20modeling%20(Online)&rft.au=Lipton,%20Robert%20P.&rft.date=2019-10-01&rft.volume=1&rft.issue=2&rft.spage=122&rft.epage=130&rft.pages=122-130&rft.issn=2522-896X&rft.eissn=2522-8978&rft_id=info:doi/10.1007/s42102-019-00010-0&rft_dat=%3Ccrossref_sprin%3E10_1007_s42102_019_00010_0%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2500-38d8059efd1662cabf50a3cbfdfbf054b201355fe7a641b879473d40edb17be53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |