Loading…
p-Toluenesulfonic acid doped vanadium pentoxide/polypyrrole film for highly sensitive hydrogen sensor
Properly assembled nanostructure of hybrid materials leads to better hydrogen gas sensing performance. In this study, a nove, and facile assembly approach was developed to construct a relatively quick and sensitive conductive polymer sensor for detecting trace quantities of hydrogen gas in a nitroge...
Saved in:
Published in: | Advanced composites and hybrid materials 2023-12, Vol.6 (6), Article 218 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Properly assembled nanostructure of hybrid materials leads to better hydrogen gas sensing performance. In this study, a nove, and facile assembly approach was developed to construct a relatively quick and sensitive conductive polymer sensor for detecting trace quantities of hydrogen gas in a nitrogen atmosphere. Through chemical polymerization, hybrid thin films of vanadium pentoxide (V
2
O
5
) and polypyrrole (PPY) were fabricated to form the ordered structure of the composites. Also, the effect of p-toluenesulfonic acid, a dopant, on the structure and properties of conducting polymer and vanadium pentoxide composite was investigated. The dopant effect was proved to improve sensing performance via a hydrogen sensing experiment. These sensors are able to detect minor current changes induced by low-coordinated hydrogen exposure (5–250 ppm) interactions at room temperature and have quick response and recovery times of 42 s and 37 s, respectively. |
---|---|
ISSN: | 2522-0128 2522-0136 |
DOI: | 10.1007/s42114-023-00796-0 |