Loading…

Driving organic field-effect transistors: enhancing crystallization and electrical performance with blends and inkjet printing

The drive to deliver ever-more powerful and feature-rich organic integrated circuits has made the interface contact quality improvement—that is, the process of alleviating the hysteresis phenomenon and contact resistance of the electrical properties in organic field-effect transistors (OFETs)—a crit...

Full description

Saved in:
Bibliographic Details
Published in:Advanced composites and hybrid materials 2024-12, Vol.7 (6), Article 192
Main Authors: Zhao, Xiaotong, Du, Peng, Qiu, Fei, Hou, Yuanlang, Lu, Hanxiao, Zhang, Jiemin, Geng, Xiangshun, Dun, Guanhua, Chen, Sisi, Lei, Ming, Ren, Tian-Ling
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c172t-d4c420bbf13eae67d61ce769f06e36504e924951e1509e6ce836f83c45c8b86e3
container_end_page
container_issue 6
container_start_page
container_title Advanced composites and hybrid materials
container_volume 7
creator Zhao, Xiaotong
Du, Peng
Qiu, Fei
Hou, Yuanlang
Lu, Hanxiao
Zhang, Jiemin
Geng, Xiangshun
Dun, Guanhua
Chen, Sisi
Lei, Ming
Ren, Tian-Ling
description The drive to deliver ever-more powerful and feature-rich organic integrated circuits has made the interface contact quality improvement—that is, the process of alleviating the hysteresis phenomenon and contact resistance of the electrical properties in organic field-effect transistors (OFETs)—a critical challenge for the organic semiconductor (OSC) microelectronics industry. The use of blends of OSCs and insulating binding polymers has offered a breakthrough to circumvent these limitations. Here, we introduced a novel method for preparing high-performance OFETs based on a direct-writing inkjet printing (DWIP) blend composed of 6,13-bis(triisopropylsilylethinyl) pentacene (TIPS-pentacene) and poly(methyl methacrylate) (PMMA). The small molecular weight of PMMA imparted significantly superior crystallization of small-molecule OSCs, and the OFETs exhibited better electrical performance than other comparative conditions. The crystallization and characteristics improved because of two mechanisms: First, the PMMA delivered superior mechanical strength, stability, and improved film uniformity and created a more uniform interface that decreased the charge accumulation, thereby alleviating the hysteresis and contact resistance. Second, combined with DWIP technology and thanks to the advantages of horizontal solution shearing and spatially restricted domains, the blends contributed to solute draw and thus handled mass transport more efficiently and controllably. The proposed method provides attractive properties for industrial applications.
doi_str_mv 10.1007/s42114-024-01025-y
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42114_024_01025_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42114_024_01025_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-d4c420bbf13eae67d61ce769f06e36504e924951e1509e6ce836f83c45c8b86e3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEhX0BTj5BQK24zgJN1R-pUpc4Gw5zrp1cZ3KNqBw4NlxWsSRw2p3pflGo0HogpJLSkh9FTmjlBeE5aGEVcV4hGasYiy_pTj-u1lziuYx2o5MAKkrNkPft8F-WL_CQ1gpbzU2FlxfgDGgE05B-WhjGkK8xuDXyutJq8MYk3LOfqlkB4-V7zG4DASrlcM7CGYI2ywG_GnTGncOfB_3MuvfNpDwLlifstU5OjHKRZj_7jP0en_3sngsls8PT4ubZaFpzVLRc80Z6TpDS1Ag6l5QDbVoDRFQiopwaBlvKwq0Ii0IDU0pTFNqXumma7LmDLGDrw5DjAGMzAm2KoySEjmVKA8lylyi3JcoxwyVByhOcVcQ5GZ4Dz7n_I_6AQafeOk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Driving organic field-effect transistors: enhancing crystallization and electrical performance with blends and inkjet printing</title><source>Springer Nature</source><creator>Zhao, Xiaotong ; Du, Peng ; Qiu, Fei ; Hou, Yuanlang ; Lu, Hanxiao ; Zhang, Jiemin ; Geng, Xiangshun ; Dun, Guanhua ; Chen, Sisi ; Lei, Ming ; Ren, Tian-Ling</creator><creatorcontrib>Zhao, Xiaotong ; Du, Peng ; Qiu, Fei ; Hou, Yuanlang ; Lu, Hanxiao ; Zhang, Jiemin ; Geng, Xiangshun ; Dun, Guanhua ; Chen, Sisi ; Lei, Ming ; Ren, Tian-Ling</creatorcontrib><description>The drive to deliver ever-more powerful and feature-rich organic integrated circuits has made the interface contact quality improvement—that is, the process of alleviating the hysteresis phenomenon and contact resistance of the electrical properties in organic field-effect transistors (OFETs)—a critical challenge for the organic semiconductor (OSC) microelectronics industry. The use of blends of OSCs and insulating binding polymers has offered a breakthrough to circumvent these limitations. Here, we introduced a novel method for preparing high-performance OFETs based on a direct-writing inkjet printing (DWIP) blend composed of 6,13-bis(triisopropylsilylethinyl) pentacene (TIPS-pentacene) and poly(methyl methacrylate) (PMMA). The small molecular weight of PMMA imparted significantly superior crystallization of small-molecule OSCs, and the OFETs exhibited better electrical performance than other comparative conditions. The crystallization and characteristics improved because of two mechanisms: First, the PMMA delivered superior mechanical strength, stability, and improved film uniformity and created a more uniform interface that decreased the charge accumulation, thereby alleviating the hysteresis and contact resistance. Second, combined with DWIP technology and thanks to the advantages of horizontal solution shearing and spatially restricted domains, the blends contributed to solute draw and thus handled mass transport more efficiently and controllably. The proposed method provides attractive properties for industrial applications.</description><identifier>ISSN: 2522-0128</identifier><identifier>EISSN: 2522-0136</identifier><identifier>DOI: 10.1007/s42114-024-01025-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Ceramics ; Chemistry and Materials Science ; Composites ; Glass ; Materials Engineering ; Materials Science ; Natural Materials ; Polymer Sciences</subject><ispartof>Advanced composites and hybrid materials, 2024-12, Vol.7 (6), Article 192</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c172t-d4c420bbf13eae67d61ce769f06e36504e924951e1509e6ce836f83c45c8b86e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Xiaotong</creatorcontrib><creatorcontrib>Du, Peng</creatorcontrib><creatorcontrib>Qiu, Fei</creatorcontrib><creatorcontrib>Hou, Yuanlang</creatorcontrib><creatorcontrib>Lu, Hanxiao</creatorcontrib><creatorcontrib>Zhang, Jiemin</creatorcontrib><creatorcontrib>Geng, Xiangshun</creatorcontrib><creatorcontrib>Dun, Guanhua</creatorcontrib><creatorcontrib>Chen, Sisi</creatorcontrib><creatorcontrib>Lei, Ming</creatorcontrib><creatorcontrib>Ren, Tian-Ling</creatorcontrib><title>Driving organic field-effect transistors: enhancing crystallization and electrical performance with blends and inkjet printing</title><title>Advanced composites and hybrid materials</title><addtitle>Adv Compos Hybrid Mater</addtitle><description>The drive to deliver ever-more powerful and feature-rich organic integrated circuits has made the interface contact quality improvement—that is, the process of alleviating the hysteresis phenomenon and contact resistance of the electrical properties in organic field-effect transistors (OFETs)—a critical challenge for the organic semiconductor (OSC) microelectronics industry. The use of blends of OSCs and insulating binding polymers has offered a breakthrough to circumvent these limitations. Here, we introduced a novel method for preparing high-performance OFETs based on a direct-writing inkjet printing (DWIP) blend composed of 6,13-bis(triisopropylsilylethinyl) pentacene (TIPS-pentacene) and poly(methyl methacrylate) (PMMA). The small molecular weight of PMMA imparted significantly superior crystallization of small-molecule OSCs, and the OFETs exhibited better electrical performance than other comparative conditions. The crystallization and characteristics improved because of two mechanisms: First, the PMMA delivered superior mechanical strength, stability, and improved film uniformity and created a more uniform interface that decreased the charge accumulation, thereby alleviating the hysteresis and contact resistance. Second, combined with DWIP technology and thanks to the advantages of horizontal solution shearing and spatially restricted domains, the blends contributed to solute draw and thus handled mass transport more efficiently and controllably. The proposed method provides attractive properties for industrial applications.</description><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Glass</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Natural Materials</subject><subject>Polymer Sciences</subject><issn>2522-0128</issn><issn>2522-0136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEhX0BTj5BQK24zgJN1R-pUpc4Gw5zrp1cZ3KNqBw4NlxWsSRw2p3pflGo0HogpJLSkh9FTmjlBeE5aGEVcV4hGasYiy_pTj-u1lziuYx2o5MAKkrNkPft8F-WL_CQ1gpbzU2FlxfgDGgE05B-WhjGkK8xuDXyutJq8MYk3LOfqlkB4-V7zG4DASrlcM7CGYI2ywG_GnTGncOfB_3MuvfNpDwLlifstU5OjHKRZj_7jP0en_3sngsls8PT4ubZaFpzVLRc80Z6TpDS1Ag6l5QDbVoDRFQiopwaBlvKwq0Ii0IDU0pTFNqXumma7LmDLGDrw5DjAGMzAm2KoySEjmVKA8lylyi3JcoxwyVByhOcVcQ5GZ4Dz7n_I_6AQafeOk</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zhao, Xiaotong</creator><creator>Du, Peng</creator><creator>Qiu, Fei</creator><creator>Hou, Yuanlang</creator><creator>Lu, Hanxiao</creator><creator>Zhang, Jiemin</creator><creator>Geng, Xiangshun</creator><creator>Dun, Guanhua</creator><creator>Chen, Sisi</creator><creator>Lei, Ming</creator><creator>Ren, Tian-Ling</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Driving organic field-effect transistors: enhancing crystallization and electrical performance with blends and inkjet printing</title><author>Zhao, Xiaotong ; Du, Peng ; Qiu, Fei ; Hou, Yuanlang ; Lu, Hanxiao ; Zhang, Jiemin ; Geng, Xiangshun ; Dun, Guanhua ; Chen, Sisi ; Lei, Ming ; Ren, Tian-Ling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-d4c420bbf13eae67d61ce769f06e36504e924951e1509e6ce836f83c45c8b86e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Glass</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Natural Materials</topic><topic>Polymer Sciences</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xiaotong</creatorcontrib><creatorcontrib>Du, Peng</creatorcontrib><creatorcontrib>Qiu, Fei</creatorcontrib><creatorcontrib>Hou, Yuanlang</creatorcontrib><creatorcontrib>Lu, Hanxiao</creatorcontrib><creatorcontrib>Zhang, Jiemin</creatorcontrib><creatorcontrib>Geng, Xiangshun</creatorcontrib><creatorcontrib>Dun, Guanhua</creatorcontrib><creatorcontrib>Chen, Sisi</creatorcontrib><creatorcontrib>Lei, Ming</creatorcontrib><creatorcontrib>Ren, Tian-Ling</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced composites and hybrid materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xiaotong</au><au>Du, Peng</au><au>Qiu, Fei</au><au>Hou, Yuanlang</au><au>Lu, Hanxiao</au><au>Zhang, Jiemin</au><au>Geng, Xiangshun</au><au>Dun, Guanhua</au><au>Chen, Sisi</au><au>Lei, Ming</au><au>Ren, Tian-Ling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Driving organic field-effect transistors: enhancing crystallization and electrical performance with blends and inkjet printing</atitle><jtitle>Advanced composites and hybrid materials</jtitle><stitle>Adv Compos Hybrid Mater</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>7</volume><issue>6</issue><artnum>192</artnum><issn>2522-0128</issn><eissn>2522-0136</eissn><abstract>The drive to deliver ever-more powerful and feature-rich organic integrated circuits has made the interface contact quality improvement—that is, the process of alleviating the hysteresis phenomenon and contact resistance of the electrical properties in organic field-effect transistors (OFETs)—a critical challenge for the organic semiconductor (OSC) microelectronics industry. The use of blends of OSCs and insulating binding polymers has offered a breakthrough to circumvent these limitations. Here, we introduced a novel method for preparing high-performance OFETs based on a direct-writing inkjet printing (DWIP) blend composed of 6,13-bis(triisopropylsilylethinyl) pentacene (TIPS-pentacene) and poly(methyl methacrylate) (PMMA). The small molecular weight of PMMA imparted significantly superior crystallization of small-molecule OSCs, and the OFETs exhibited better electrical performance than other comparative conditions. The crystallization and characteristics improved because of two mechanisms: First, the PMMA delivered superior mechanical strength, stability, and improved film uniformity and created a more uniform interface that decreased the charge accumulation, thereby alleviating the hysteresis and contact resistance. Second, combined with DWIP technology and thanks to the advantages of horizontal solution shearing and spatially restricted domains, the blends contributed to solute draw and thus handled mass transport more efficiently and controllably. The proposed method provides attractive properties for industrial applications.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42114-024-01025-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 2522-0128
ispartof Advanced composites and hybrid materials, 2024-12, Vol.7 (6), Article 192
issn 2522-0128
2522-0136
language eng
recordid cdi_crossref_primary_10_1007_s42114_024_01025_y
source Springer Nature
subjects Ceramics
Chemistry and Materials Science
Composites
Glass
Materials Engineering
Materials Science
Natural Materials
Polymer Sciences
title Driving organic field-effect transistors: enhancing crystallization and electrical performance with blends and inkjet printing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A27%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Driving%20organic%20field-effect%20transistors:%20enhancing%20crystallization%20and%20electrical%20performance%20with%20blends%20and%20inkjet%20printing&rft.jtitle=Advanced%20composites%20and%20hybrid%20materials&rft.au=Zhao,%20Xiaotong&rft.date=2024-12-01&rft.volume=7&rft.issue=6&rft.artnum=192&rft.issn=2522-0128&rft.eissn=2522-0136&rft_id=info:doi/10.1007/s42114-024-01025-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s42114_024_01025_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172t-d4c420bbf13eae67d61ce769f06e36504e924951e1509e6ce836f83c45c8b86e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true