Loading…

Design and Analysis of Osmosis-based Artificial Muscle

This paper presents the design and analysis of an osmosis-based artificial muscle inspired by the leaf movements of Mimosa pudica. M. pudica’s leaves quickly contract using osmosis pressure in the pulvinus when they are stimulated. We analyzed and simulated an osmosis system to identify the factors...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bionics engineering 2019, Vol.16 (1), p.56-65
Main Authors: Gim, Juhui, Ahn, Changsun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023
cites cdi_FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023
container_end_page 65
container_issue 1
container_start_page 56
container_title Journal of bionics engineering
container_volume 16
creator Gim, Juhui
Ahn, Changsun
description This paper presents the design and analysis of an osmosis-based artificial muscle inspired by the leaf movements of Mimosa pudica. M. pudica’s leaves quickly contract using osmosis pressure in the pulvinus when they are stimulated. We analyzed and simulated an osmosis system to identify the factors for fast osmosis reactions and designed a prototype artificial muscle based on the results. The osmosis phenomenon was mathematically modeled, analyzed, and verified through several experiments. The analysis shows that fast osmosis responses require a large diffusion coefficient with a high-flux membrane or small ratio of the cross-sectional area to the volume of the osmosis system. We designed a micro-scale system to achieve the required ratio. The contraction and relaxation of the artificial muscle are realized by changes of the local concentration of potassium ions, which can be aggregated by a controllable electric field. As a result, the artificial muscle shows controllable behavior with fast reactions.
doi_str_mv 10.1007/s42235-019-0006-7
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42235_019_0006_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42235_019_0006_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EEqHwAezyA4bx2LHjZVUeRSrqBtaW49hVqjRBnnbRvydVWLOaK809VzqMPQp4EgDmmRSirDgIywFAc3PFCqyU5CiUuGaF0Aa5rtDesjuiPUBlsZYF0y-Rut1Q-qEtl4Pvz9RROaZyS4dxirzxFKdPPnapC53vy88ThT7es5vke4oPf3fBvt9ev1Zrvtm-f6yWGx6kVkcebUQTjPXBJqxrFZJW3qfopbaxFRDqhB6UQS8VihhF2_g2VFE12jQKUC6YmHdDHolyTO4ndwefz06Au4i7WdxN4u4i7szE4MzQ1B12Mbv9eMqTG_0D_QIntFtO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and Analysis of Osmosis-based Artificial Muscle</title><source>Springer Nature</source><creator>Gim, Juhui ; Ahn, Changsun</creator><creatorcontrib>Gim, Juhui ; Ahn, Changsun</creatorcontrib><description>This paper presents the design and analysis of an osmosis-based artificial muscle inspired by the leaf movements of Mimosa pudica. M. pudica’s leaves quickly contract using osmosis pressure in the pulvinus when they are stimulated. We analyzed and simulated an osmosis system to identify the factors for fast osmosis reactions and designed a prototype artificial muscle based on the results. The osmosis phenomenon was mathematically modeled, analyzed, and verified through several experiments. The analysis shows that fast osmosis responses require a large diffusion coefficient with a high-flux membrane or small ratio of the cross-sectional area to the volume of the osmosis system. We designed a micro-scale system to achieve the required ratio. The contraction and relaxation of the artificial muscle are realized by changes of the local concentration of potassium ions, which can be aggregated by a controllable electric field. As a result, the artificial muscle shows controllable behavior with fast reactions.</description><identifier>ISSN: 1672-6529</identifier><identifier>EISSN: 2543-2141</identifier><identifier>DOI: 10.1007/s42235-019-0006-7</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Artificial Intelligence ; Biochemical Engineering ; Bioinformatics ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Engineering</subject><ispartof>Journal of bionics engineering, 2019, Vol.16 (1), p.56-65</ispartof><rights>Jilin University 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023</citedby><cites>FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gim, Juhui</creatorcontrib><creatorcontrib>Ahn, Changsun</creatorcontrib><title>Design and Analysis of Osmosis-based Artificial Muscle</title><title>Journal of bionics engineering</title><addtitle>J Bionic Eng</addtitle><description>This paper presents the design and analysis of an osmosis-based artificial muscle inspired by the leaf movements of Mimosa pudica. M. pudica’s leaves quickly contract using osmosis pressure in the pulvinus when they are stimulated. We analyzed and simulated an osmosis system to identify the factors for fast osmosis reactions and designed a prototype artificial muscle based on the results. The osmosis phenomenon was mathematically modeled, analyzed, and verified through several experiments. The analysis shows that fast osmosis responses require a large diffusion coefficient with a high-flux membrane or small ratio of the cross-sectional area to the volume of the osmosis system. We designed a micro-scale system to achieve the required ratio. The contraction and relaxation of the artificial muscle are realized by changes of the local concentration of potassium ions, which can be aggregated by a controllable electric field. As a result, the artificial muscle shows controllable behavior with fast reactions.</description><subject>Artificial Intelligence</subject><subject>Biochemical Engineering</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Engineering</subject><issn>1672-6529</issn><issn>2543-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EEqHwAezyA4bx2LHjZVUeRSrqBtaW49hVqjRBnnbRvydVWLOaK809VzqMPQp4EgDmmRSirDgIywFAc3PFCqyU5CiUuGaF0Aa5rtDesjuiPUBlsZYF0y-Rut1Q-qEtl4Pvz9RROaZyS4dxirzxFKdPPnapC53vy88ThT7es5vke4oPf3fBvt9ev1Zrvtm-f6yWGx6kVkcebUQTjPXBJqxrFZJW3qfopbaxFRDqhB6UQS8VihhF2_g2VFE12jQKUC6YmHdDHolyTO4ndwefz06Au4i7WdxN4u4i7szE4MzQ1B12Mbv9eMqTG_0D_QIntFtO</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Gim, Juhui</creator><creator>Ahn, Changsun</creator><general>Springer Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2019</creationdate><title>Design and Analysis of Osmosis-based Artificial Muscle</title><author>Gim, Juhui ; Ahn, Changsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Biochemical Engineering</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gim, Juhui</creatorcontrib><creatorcontrib>Ahn, Changsun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of bionics engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gim, Juhui</au><au>Ahn, Changsun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of Osmosis-based Artificial Muscle</atitle><jtitle>Journal of bionics engineering</jtitle><stitle>J Bionic Eng</stitle><date>2019</date><risdate>2019</risdate><volume>16</volume><issue>1</issue><spage>56</spage><epage>65</epage><pages>56-65</pages><issn>1672-6529</issn><eissn>2543-2141</eissn><abstract>This paper presents the design and analysis of an osmosis-based artificial muscle inspired by the leaf movements of Mimosa pudica. M. pudica’s leaves quickly contract using osmosis pressure in the pulvinus when they are stimulated. We analyzed and simulated an osmosis system to identify the factors for fast osmosis reactions and designed a prototype artificial muscle based on the results. The osmosis phenomenon was mathematically modeled, analyzed, and verified through several experiments. The analysis shows that fast osmosis responses require a large diffusion coefficient with a high-flux membrane or small ratio of the cross-sectional area to the volume of the osmosis system. We designed a micro-scale system to achieve the required ratio. The contraction and relaxation of the artificial muscle are realized by changes of the local concentration of potassium ions, which can be aggregated by a controllable electric field. As a result, the artificial muscle shows controllable behavior with fast reactions.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s42235-019-0006-7</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-6529
ispartof Journal of bionics engineering, 2019, Vol.16 (1), p.56-65
issn 1672-6529
2543-2141
language eng
recordid cdi_crossref_primary_10_1007_s42235_019_0006_7
source Springer Nature
subjects Artificial Intelligence
Biochemical Engineering
Bioinformatics
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Engineering
title Design and Analysis of Osmosis-based Artificial Muscle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20Osmosis-based%20Artificial%20Muscle&rft.jtitle=Journal%20of%20bionics%20engineering&rft.au=Gim,%20Juhui&rft.date=2019&rft.volume=16&rft.issue=1&rft.spage=56&rft.epage=65&rft.pages=56-65&rft.issn=1672-6529&rft.eissn=2543-2141&rft_id=info:doi/10.1007/s42235-019-0006-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s42235_019_0006_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true