Loading…
Design and Analysis of Osmosis-based Artificial Muscle
This paper presents the design and analysis of an osmosis-based artificial muscle inspired by the leaf movements of Mimosa pudica. M. pudica’s leaves quickly contract using osmosis pressure in the pulvinus when they are stimulated. We analyzed and simulated an osmosis system to identify the factors...
Saved in:
Published in: | Journal of bionics engineering 2019, Vol.16 (1), p.56-65 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023 |
container_end_page | 65 |
container_issue | 1 |
container_start_page | 56 |
container_title | Journal of bionics engineering |
container_volume | 16 |
creator | Gim, Juhui Ahn, Changsun |
description | This paper presents the design and analysis of an osmosis-based artificial muscle inspired by the leaf movements of
Mimosa pudica. M. pudica’s
leaves quickly contract using osmosis pressure in the pulvinus when they are stimulated. We analyzed and simulated an osmosis system to identify the factors for fast osmosis reactions and designed a prototype artificial muscle based on the results. The osmosis phenomenon was mathematically modeled, analyzed, and verified through several experiments. The analysis shows that fast osmosis responses require a large diffusion coefficient with a high-flux membrane or small ratio of the cross-sectional area to the volume of the osmosis system. We designed a micro-scale system to achieve the required ratio. The contraction and relaxation of the artificial muscle are realized by changes of the local concentration of potassium ions, which can be aggregated by a controllable electric field. As a result, the artificial muscle shows controllable behavior with fast reactions. |
doi_str_mv | 10.1007/s42235-019-0006-7 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42235_019_0006_7</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42235_019_0006_7</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EEqHwAezyA4bx2LHjZVUeRSrqBtaW49hVqjRBnnbRvydVWLOaK809VzqMPQp4EgDmmRSirDgIywFAc3PFCqyU5CiUuGaF0Aa5rtDesjuiPUBlsZYF0y-Rut1Q-qEtl4Pvz9RROaZyS4dxirzxFKdPPnapC53vy88ThT7es5vke4oPf3fBvt9ev1Zrvtm-f6yWGx6kVkcebUQTjPXBJqxrFZJW3qfopbaxFRDqhB6UQS8VihhF2_g2VFE12jQKUC6YmHdDHolyTO4ndwefz06Au4i7WdxN4u4i7szE4MzQ1B12Mbv9eMqTG_0D_QIntFtO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design and Analysis of Osmosis-based Artificial Muscle</title><source>Springer Nature</source><creator>Gim, Juhui ; Ahn, Changsun</creator><creatorcontrib>Gim, Juhui ; Ahn, Changsun</creatorcontrib><description>This paper presents the design and analysis of an osmosis-based artificial muscle inspired by the leaf movements of
Mimosa pudica. M. pudica’s
leaves quickly contract using osmosis pressure in the pulvinus when they are stimulated. We analyzed and simulated an osmosis system to identify the factors for fast osmosis reactions and designed a prototype artificial muscle based on the results. The osmosis phenomenon was mathematically modeled, analyzed, and verified through several experiments. The analysis shows that fast osmosis responses require a large diffusion coefficient with a high-flux membrane or small ratio of the cross-sectional area to the volume of the osmosis system. We designed a micro-scale system to achieve the required ratio. The contraction and relaxation of the artificial muscle are realized by changes of the local concentration of potassium ions, which can be aggregated by a controllable electric field. As a result, the artificial muscle shows controllable behavior with fast reactions.</description><identifier>ISSN: 1672-6529</identifier><identifier>EISSN: 2543-2141</identifier><identifier>DOI: 10.1007/s42235-019-0006-7</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Artificial Intelligence ; Biochemical Engineering ; Bioinformatics ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Engineering</subject><ispartof>Journal of bionics engineering, 2019, Vol.16 (1), p.56-65</ispartof><rights>Jilin University 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023</citedby><cites>FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gim, Juhui</creatorcontrib><creatorcontrib>Ahn, Changsun</creatorcontrib><title>Design and Analysis of Osmosis-based Artificial Muscle</title><title>Journal of bionics engineering</title><addtitle>J Bionic Eng</addtitle><description>This paper presents the design and analysis of an osmosis-based artificial muscle inspired by the leaf movements of
Mimosa pudica. M. pudica’s
leaves quickly contract using osmosis pressure in the pulvinus when they are stimulated. We analyzed and simulated an osmosis system to identify the factors for fast osmosis reactions and designed a prototype artificial muscle based on the results. The osmosis phenomenon was mathematically modeled, analyzed, and verified through several experiments. The analysis shows that fast osmosis responses require a large diffusion coefficient with a high-flux membrane or small ratio of the cross-sectional area to the volume of the osmosis system. We designed a micro-scale system to achieve the required ratio. The contraction and relaxation of the artificial muscle are realized by changes of the local concentration of potassium ions, which can be aggregated by a controllable electric field. As a result, the artificial muscle shows controllable behavior with fast reactions.</description><subject>Artificial Intelligence</subject><subject>Biochemical Engineering</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Engineering</subject><issn>1672-6529</issn><issn>2543-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EEqHwAezyA4bx2LHjZVUeRSrqBtaW49hVqjRBnnbRvydVWLOaK809VzqMPQp4EgDmmRSirDgIywFAc3PFCqyU5CiUuGaF0Aa5rtDesjuiPUBlsZYF0y-Rut1Q-qEtl4Pvz9RROaZyS4dxirzxFKdPPnapC53vy88ThT7es5vke4oPf3fBvt9ev1Zrvtm-f6yWGx6kVkcebUQTjPXBJqxrFZJW3qfopbaxFRDqhB6UQS8VihhF2_g2VFE12jQKUC6YmHdDHolyTO4ndwefz06Au4i7WdxN4u4i7szE4MzQ1B12Mbv9eMqTG_0D_QIntFtO</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Gim, Juhui</creator><creator>Ahn, Changsun</creator><general>Springer Singapore</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2019</creationdate><title>Design and Analysis of Osmosis-based Artificial Muscle</title><author>Gim, Juhui ; Ahn, Changsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Biochemical Engineering</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gim, Juhui</creatorcontrib><creatorcontrib>Ahn, Changsun</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of bionics engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gim, Juhui</au><au>Ahn, Changsun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and Analysis of Osmosis-based Artificial Muscle</atitle><jtitle>Journal of bionics engineering</jtitle><stitle>J Bionic Eng</stitle><date>2019</date><risdate>2019</risdate><volume>16</volume><issue>1</issue><spage>56</spage><epage>65</epage><pages>56-65</pages><issn>1672-6529</issn><eissn>2543-2141</eissn><abstract>This paper presents the design and analysis of an osmosis-based artificial muscle inspired by the leaf movements of
Mimosa pudica. M. pudica’s
leaves quickly contract using osmosis pressure in the pulvinus when they are stimulated. We analyzed and simulated an osmosis system to identify the factors for fast osmosis reactions and designed a prototype artificial muscle based on the results. The osmosis phenomenon was mathematically modeled, analyzed, and verified through several experiments. The analysis shows that fast osmosis responses require a large diffusion coefficient with a high-flux membrane or small ratio of the cross-sectional area to the volume of the osmosis system. We designed a micro-scale system to achieve the required ratio. The contraction and relaxation of the artificial muscle are realized by changes of the local concentration of potassium ions, which can be aggregated by a controllable electric field. As a result, the artificial muscle shows controllable behavior with fast reactions.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s42235-019-0006-7</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-6529 |
ispartof | Journal of bionics engineering, 2019, Vol.16 (1), p.56-65 |
issn | 1672-6529 2543-2141 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s42235_019_0006_7 |
source | Springer Nature |
subjects | Artificial Intelligence Biochemical Engineering Bioinformatics Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Engineering |
title | Design and Analysis of Osmosis-based Artificial Muscle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20Analysis%20of%20Osmosis-based%20Artificial%20Muscle&rft.jtitle=Journal%20of%20bionics%20engineering&rft.au=Gim,%20Juhui&rft.date=2019&rft.volume=16&rft.issue=1&rft.spage=56&rft.epage=65&rft.pages=56-65&rft.issn=1672-6529&rft.eissn=2543-2141&rft_id=info:doi/10.1007/s42235-019-0006-7&rft_dat=%3Ccrossref_sprin%3E10_1007_s42235_019_0006_7%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-e9e27c79ac9f2884cf64aafea369ed10c8f2a0472a3421ee1dbadc5e4b67b4023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |