Loading…
Design of a Novel Exoskeleton with Passive Magnetic Spring Self-locking and Spine Lateral Balancing
This paper proposes a new upper-limb exoskeleton to reduce worker physical strain. The proposed design is based on a novel PRRRP (P-Prismatic; R-Revolute) kinematic chain with 5 passive Degrees of Freedom (DoF). Utilizing a magnetic spring, the proposed mechanism includes a specially designed lockin...
Saved in:
Published in: | Journal of bionics engineering 2024, Vol.21 (1), p.236-255 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-c3b5dace74dddda4b4bed21be3bde3b2537829ed2e3b9680df091e98f6cd46603 |
container_end_page | 255 |
container_issue | 1 |
container_start_page | 236 |
container_title | Journal of bionics engineering |
container_volume | 21 |
creator | Rodríguez-León, Jhon F. Chaparro-Rico, Betsy D. M. Cafolla, Daniele Lago, Francesco Castillo-Castañeda, Eduardo Carbone, Giuseppe |
description | This paper proposes a new upper-limb exoskeleton to reduce worker physical strain. The proposed design is based on a novel PRRRP (P-Prismatic; R-Revolute) kinematic chain with 5 passive Degrees of Freedom (DoF). Utilizing a magnetic spring, the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture. The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief. This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design. An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks. The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it. |
doi_str_mv | 10.1007/s42235-023-00445-8 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42235_023_00445_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42235_023_00445_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c3b5dace74dddda4b4bed21be3bde3b2537829ed2e3b9680df091e98f6cd46603</originalsourceid><addsrcrecordid>eNp9UMtOAzEMjBBIlMIPcMoPBPLcxxFKKUjlIRXOUTbxlm1DFiVLgb8nbTljybbG1ljjQeic0QtGaXmZJOdCEcoFoVRKRaoDNOJKCsKZZIdoxIqSk0Lx-hidpLSiVNW8EiNkbyB1y4D7Fhv82G_A4-l3n9bgYegD_uqGN_xsUuo2gB_MMsDQWbz4iF1Y4gX4lvjerrfABJfnXQA8NwNE4_G18SbYvDtFR63xCc7--hi93k5fJndk_jS7n1zNiRVcDbk2yhkLpXQ5jGxkA46zBkTjcnIlyorXeZRBXVTUtbRmUFdtYZ0sCirGiO_v2tinFKHVWee7iT-aUb21Se9t0tkmvbNJV5kk9qS0ewqiXvWfMWSd_7F-Af6TbKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of a Novel Exoskeleton with Passive Magnetic Spring Self-locking and Spine Lateral Balancing</title><source>Springer Link</source><creator>Rodríguez-León, Jhon F. ; Chaparro-Rico, Betsy D. M. ; Cafolla, Daniele ; Lago, Francesco ; Castillo-Castañeda, Eduardo ; Carbone, Giuseppe</creator><creatorcontrib>Rodríguez-León, Jhon F. ; Chaparro-Rico, Betsy D. M. ; Cafolla, Daniele ; Lago, Francesco ; Castillo-Castañeda, Eduardo ; Carbone, Giuseppe</creatorcontrib><description>This paper proposes a new upper-limb exoskeleton to reduce worker physical strain. The proposed design is based on a novel PRRRP (P-Prismatic; R-Revolute) kinematic chain with 5 passive Degrees of Freedom (DoF). Utilizing a magnetic spring, the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture. The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief. This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design. An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks. The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.</description><identifier>ISSN: 1672-6529</identifier><identifier>EISSN: 2543-2141</identifier><identifier>DOI: 10.1007/s42235-023-00445-8</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Artificial Intelligence ; Biochemical Engineering ; Bioinformatics ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Engineering ; Research Article</subject><ispartof>Journal of bionics engineering, 2024, Vol.21 (1), p.236-255</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-c3b5dace74dddda4b4bed21be3bde3b2537829ed2e3b9680df091e98f6cd46603</cites><orcidid>0000-0003-0831-8358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Rodríguez-León, Jhon F.</creatorcontrib><creatorcontrib>Chaparro-Rico, Betsy D. M.</creatorcontrib><creatorcontrib>Cafolla, Daniele</creatorcontrib><creatorcontrib>Lago, Francesco</creatorcontrib><creatorcontrib>Castillo-Castañeda, Eduardo</creatorcontrib><creatorcontrib>Carbone, Giuseppe</creatorcontrib><title>Design of a Novel Exoskeleton with Passive Magnetic Spring Self-locking and Spine Lateral Balancing</title><title>Journal of bionics engineering</title><addtitle>J Bionic Eng</addtitle><description>This paper proposes a new upper-limb exoskeleton to reduce worker physical strain. The proposed design is based on a novel PRRRP (P-Prismatic; R-Revolute) kinematic chain with 5 passive Degrees of Freedom (DoF). Utilizing a magnetic spring, the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture. The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief. This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design. An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks. The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.</description><subject>Artificial Intelligence</subject><subject>Biochemical Engineering</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Engineering</subject><subject>Research Article</subject><issn>1672-6529</issn><issn>2543-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOAzEMjBBIlMIPcMoPBPLcxxFKKUjlIRXOUTbxlm1DFiVLgb8nbTljybbG1ljjQeic0QtGaXmZJOdCEcoFoVRKRaoDNOJKCsKZZIdoxIqSk0Lx-hidpLSiVNW8EiNkbyB1y4D7Fhv82G_A4-l3n9bgYegD_uqGN_xsUuo2gB_MMsDQWbz4iF1Y4gX4lvjerrfABJfnXQA8NwNE4_G18SbYvDtFR63xCc7--hi93k5fJndk_jS7n1zNiRVcDbk2yhkLpXQ5jGxkA46zBkTjcnIlyorXeZRBXVTUtbRmUFdtYZ0sCirGiO_v2tinFKHVWee7iT-aUb21Se9t0tkmvbNJV5kk9qS0ewqiXvWfMWSd_7F-Af6TbKU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Rodríguez-León, Jhon F.</creator><creator>Chaparro-Rico, Betsy D. M.</creator><creator>Cafolla, Daniele</creator><creator>Lago, Francesco</creator><creator>Castillo-Castañeda, Eduardo</creator><creator>Carbone, Giuseppe</creator><general>Springer Nature Singapore</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0831-8358</orcidid></search><sort><creationdate>2024</creationdate><title>Design of a Novel Exoskeleton with Passive Magnetic Spring Self-locking and Spine Lateral Balancing</title><author>Rodríguez-León, Jhon F. ; Chaparro-Rico, Betsy D. M. ; Cafolla, Daniele ; Lago, Francesco ; Castillo-Castañeda, Eduardo ; Carbone, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c3b5dace74dddda4b4bed21be3bde3b2537829ed2e3b9680df091e98f6cd46603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Biochemical Engineering</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Engineering</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-León, Jhon F.</creatorcontrib><creatorcontrib>Chaparro-Rico, Betsy D. M.</creatorcontrib><creatorcontrib>Cafolla, Daniele</creatorcontrib><creatorcontrib>Lago, Francesco</creatorcontrib><creatorcontrib>Castillo-Castañeda, Eduardo</creatorcontrib><creatorcontrib>Carbone, Giuseppe</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Journal of bionics engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-León, Jhon F.</au><au>Chaparro-Rico, Betsy D. M.</au><au>Cafolla, Daniele</au><au>Lago, Francesco</au><au>Castillo-Castañeda, Eduardo</au><au>Carbone, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Novel Exoskeleton with Passive Magnetic Spring Self-locking and Spine Lateral Balancing</atitle><jtitle>Journal of bionics engineering</jtitle><stitle>J Bionic Eng</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><spage>236</spage><epage>255</epage><pages>236-255</pages><issn>1672-6529</issn><eissn>2543-2141</eissn><abstract>This paper proposes a new upper-limb exoskeleton to reduce worker physical strain. The proposed design is based on a novel PRRRP (P-Prismatic; R-Revolute) kinematic chain with 5 passive Degrees of Freedom (DoF). Utilizing a magnetic spring, the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture. The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief. This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design. An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks. The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42235-023-00445-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0831-8358</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-6529 |
ispartof | Journal of bionics engineering, 2024, Vol.21 (1), p.236-255 |
issn | 1672-6529 2543-2141 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s42235_023_00445_8 |
source | Springer Link |
subjects | Artificial Intelligence Biochemical Engineering Bioinformatics Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Engineering Research Article |
title | Design of a Novel Exoskeleton with Passive Magnetic Spring Self-locking and Spine Lateral Balancing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Novel%20Exoskeleton%20with%20Passive%20Magnetic%20Spring%20Self-locking%20and%20Spine%20Lateral%20Balancing&rft.jtitle=Journal%20of%20bionics%20engineering&rft.au=Rodr%C3%ADguez-Le%C3%B3n,%20Jhon%20F.&rft.date=2024&rft.volume=21&rft.issue=1&rft.spage=236&rft.epage=255&rft.pages=236-255&rft.issn=1672-6529&rft.eissn=2543-2141&rft_id=info:doi/10.1007/s42235-023-00445-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s42235_023_00445_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-c3b5dace74dddda4b4bed21be3bde3b2537829ed2e3b9680df091e98f6cd46603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |