Loading…

Design of a Novel Exoskeleton with Passive Magnetic Spring Self-locking and Spine Lateral Balancing

This paper proposes a new upper-limb exoskeleton to reduce worker physical strain. The proposed design is based on a novel PRRRP (P-Prismatic; R-Revolute) kinematic chain with 5 passive Degrees of Freedom (DoF). Utilizing a magnetic spring, the proposed mechanism includes a specially designed lockin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bionics engineering 2024, Vol.21 (1), p.236-255
Main Authors: Rodríguez-León, Jhon F., Chaparro-Rico, Betsy D. M., Cafolla, Daniele, Lago, Francesco, Castillo-Castañeda, Eduardo, Carbone, Giuseppe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c325t-c3b5dace74dddda4b4bed21be3bde3b2537829ed2e3b9680df091e98f6cd46603
container_end_page 255
container_issue 1
container_start_page 236
container_title Journal of bionics engineering
container_volume 21
creator Rodríguez-León, Jhon F.
Chaparro-Rico, Betsy D. M.
Cafolla, Daniele
Lago, Francesco
Castillo-Castañeda, Eduardo
Carbone, Giuseppe
description This paper proposes a new upper-limb exoskeleton to reduce worker physical strain. The proposed design is based on a novel PRRRP (P-Prismatic; R-Revolute) kinematic chain with 5 passive Degrees of Freedom (DoF). Utilizing a magnetic spring, the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture. The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief. This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design. An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks. The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.
doi_str_mv 10.1007/s42235-023-00445-8
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42235_023_00445_8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42235_023_00445_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c3b5dace74dddda4b4bed21be3bde3b2537829ed2e3b9680df091e98f6cd46603</originalsourceid><addsrcrecordid>eNp9UMtOAzEMjBBIlMIPcMoPBPLcxxFKKUjlIRXOUTbxlm1DFiVLgb8nbTljybbG1ljjQeic0QtGaXmZJOdCEcoFoVRKRaoDNOJKCsKZZIdoxIqSk0Lx-hidpLSiVNW8EiNkbyB1y4D7Fhv82G_A4-l3n9bgYegD_uqGN_xsUuo2gB_MMsDQWbz4iF1Y4gX4lvjerrfABJfnXQA8NwNE4_G18SbYvDtFR63xCc7--hi93k5fJndk_jS7n1zNiRVcDbk2yhkLpXQ5jGxkA46zBkTjcnIlyorXeZRBXVTUtbRmUFdtYZ0sCirGiO_v2tinFKHVWee7iT-aUb21Se9t0tkmvbNJV5kk9qS0ewqiXvWfMWSd_7F-Af6TbKU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design of a Novel Exoskeleton with Passive Magnetic Spring Self-locking and Spine Lateral Balancing</title><source>Springer Link</source><creator>Rodríguez-León, Jhon F. ; Chaparro-Rico, Betsy D. M. ; Cafolla, Daniele ; Lago, Francesco ; Castillo-Castañeda, Eduardo ; Carbone, Giuseppe</creator><creatorcontrib>Rodríguez-León, Jhon F. ; Chaparro-Rico, Betsy D. M. ; Cafolla, Daniele ; Lago, Francesco ; Castillo-Castañeda, Eduardo ; Carbone, Giuseppe</creatorcontrib><description>This paper proposes a new upper-limb exoskeleton to reduce worker physical strain. The proposed design is based on a novel PRRRP (P-Prismatic; R-Revolute) kinematic chain with 5 passive Degrees of Freedom (DoF). Utilizing a magnetic spring, the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture. The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief. This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design. An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks. The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.</description><identifier>ISSN: 1672-6529</identifier><identifier>EISSN: 2543-2141</identifier><identifier>DOI: 10.1007/s42235-023-00445-8</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Artificial Intelligence ; Biochemical Engineering ; Bioinformatics ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical Engineering/Biotechnology ; Engineering ; Research Article</subject><ispartof>Journal of bionics engineering, 2024, Vol.21 (1), p.236-255</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-c3b5dace74dddda4b4bed21be3bde3b2537829ed2e3b9680df091e98f6cd46603</cites><orcidid>0000-0003-0831-8358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Rodríguez-León, Jhon F.</creatorcontrib><creatorcontrib>Chaparro-Rico, Betsy D. M.</creatorcontrib><creatorcontrib>Cafolla, Daniele</creatorcontrib><creatorcontrib>Lago, Francesco</creatorcontrib><creatorcontrib>Castillo-Castañeda, Eduardo</creatorcontrib><creatorcontrib>Carbone, Giuseppe</creatorcontrib><title>Design of a Novel Exoskeleton with Passive Magnetic Spring Self-locking and Spine Lateral Balancing</title><title>Journal of bionics engineering</title><addtitle>J Bionic Eng</addtitle><description>This paper proposes a new upper-limb exoskeleton to reduce worker physical strain. The proposed design is based on a novel PRRRP (P-Prismatic; R-Revolute) kinematic chain with 5 passive Degrees of Freedom (DoF). Utilizing a magnetic spring, the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture. The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief. This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design. An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks. The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.</description><subject>Artificial Intelligence</subject><subject>Biochemical Engineering</subject><subject>Bioinformatics</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Engineering</subject><subject>Research Article</subject><issn>1672-6529</issn><issn>2543-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOAzEMjBBIlMIPcMoPBPLcxxFKKUjlIRXOUTbxlm1DFiVLgb8nbTljybbG1ljjQeic0QtGaXmZJOdCEcoFoVRKRaoDNOJKCsKZZIdoxIqSk0Lx-hidpLSiVNW8EiNkbyB1y4D7Fhv82G_A4-l3n9bgYegD_uqGN_xsUuo2gB_MMsDQWbz4iF1Y4gX4lvjerrfABJfnXQA8NwNE4_G18SbYvDtFR63xCc7--hi93k5fJndk_jS7n1zNiRVcDbk2yhkLpXQ5jGxkA46zBkTjcnIlyorXeZRBXVTUtbRmUFdtYZ0sCirGiO_v2tinFKHVWee7iT-aUb21Se9t0tkmvbNJV5kk9qS0ewqiXvWfMWSd_7F-Af6TbKU</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Rodríguez-León, Jhon F.</creator><creator>Chaparro-Rico, Betsy D. M.</creator><creator>Cafolla, Daniele</creator><creator>Lago, Francesco</creator><creator>Castillo-Castañeda, Eduardo</creator><creator>Carbone, Giuseppe</creator><general>Springer Nature Singapore</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0831-8358</orcidid></search><sort><creationdate>2024</creationdate><title>Design of a Novel Exoskeleton with Passive Magnetic Spring Self-locking and Spine Lateral Balancing</title><author>Rodríguez-León, Jhon F. ; Chaparro-Rico, Betsy D. M. ; Cafolla, Daniele ; Lago, Francesco ; Castillo-Castañeda, Eduardo ; Carbone, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c3b5dace74dddda4b4bed21be3bde3b2537829ed2e3b9680df091e98f6cd46603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Biochemical Engineering</topic><topic>Bioinformatics</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Engineering</topic><topic>Research Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rodríguez-León, Jhon F.</creatorcontrib><creatorcontrib>Chaparro-Rico, Betsy D. M.</creatorcontrib><creatorcontrib>Cafolla, Daniele</creatorcontrib><creatorcontrib>Lago, Francesco</creatorcontrib><creatorcontrib>Castillo-Castañeda, Eduardo</creatorcontrib><creatorcontrib>Carbone, Giuseppe</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Journal of bionics engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rodríguez-León, Jhon F.</au><au>Chaparro-Rico, Betsy D. M.</au><au>Cafolla, Daniele</au><au>Lago, Francesco</au><au>Castillo-Castañeda, Eduardo</au><au>Carbone, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Novel Exoskeleton with Passive Magnetic Spring Self-locking and Spine Lateral Balancing</atitle><jtitle>Journal of bionics engineering</jtitle><stitle>J Bionic Eng</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><issue>1</issue><spage>236</spage><epage>255</epage><pages>236-255</pages><issn>1672-6529</issn><eissn>2543-2141</eissn><abstract>This paper proposes a new upper-limb exoskeleton to reduce worker physical strain. The proposed design is based on a novel PRRRP (P-Prismatic; R-Revolute) kinematic chain with 5 passive Degrees of Freedom (DoF). Utilizing a magnetic spring, the proposed mechanism includes a specially designed locking mechanism that maintains any desired task posture. The proposed exoskeleton incorporates a balancing mechanism to alleviate discomfort and spinal torsional effects also helping in limb weight relief. This paper reports specific models and simulations to demonstrate the feasibility and effectiveness of the proposed design. An experimental characterization is performed to validate the performance of the mechanism in terms of forces and physical strain during a specific application consisting of ceiling-surface drilling tasks. The obtained results preliminarily validate the engineering feasibility and effectiveness of the proposed exoskeleton in the intended operation task thereby requiring the user to exert significantly less force than when not wearing it.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42235-023-00445-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0003-0831-8358</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1672-6529
ispartof Journal of bionics engineering, 2024, Vol.21 (1), p.236-255
issn 1672-6529
2543-2141
language eng
recordid cdi_crossref_primary_10_1007_s42235_023_00445_8
source Springer Link
subjects Artificial Intelligence
Biochemical Engineering
Bioinformatics
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Engineering
Research Article
title Design of a Novel Exoskeleton with Passive Magnetic Spring Self-locking and Spine Lateral Balancing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Novel%20Exoskeleton%20with%20Passive%20Magnetic%20Spring%20Self-locking%20and%20Spine%20Lateral%20Balancing&rft.jtitle=Journal%20of%20bionics%20engineering&rft.au=Rodr%C3%ADguez-Le%C3%B3n,%20Jhon%20F.&rft.date=2024&rft.volume=21&rft.issue=1&rft.spage=236&rft.epage=255&rft.pages=236-255&rft.issn=1672-6529&rft.eissn=2543-2141&rft_id=info:doi/10.1007/s42235-023-00445-8&rft_dat=%3Ccrossref_sprin%3E10_1007_s42235_023_00445_8%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-c3b5dace74dddda4b4bed21be3bde3b2537829ed2e3b9680df091e98f6cd46603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true