Loading…

Deep reinforcement learning in fluid mechanics: A promising method for both active flow control and shape optimization

In recent years, artificial neural networks (ANNs) and deep learning have become increasingly popular across a wide range of scientific and technical fields, including fluid mechanics. While it will take time to fully grasp the potentialities as well as the limitations of these methods, evidence is...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrodynamics. Series B 2020-04, Vol.32 (2), p.234-246
Main Authors: Rabault, Jean, Ren, Feng, Zhang, Wei, Tang, Hui, Xu, Hui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, artificial neural networks (ANNs) and deep learning have become increasingly popular across a wide range of scientific and technical fields, including fluid mechanics. While it will take time to fully grasp the potentialities as well as the limitations of these methods, evidence is starting to accumulate that point to their potential in helping solve problems for which no theoretically optimal solution method is known. This is particularly true in fluid mechanics, where problems involving optimal control and optimal design are involved. Indeed, such problems are famously difficult to solve effectively with traditional methods due to the combination of non linearity, non convexity, and high dimensionality they involve. By contrast, deep reinforcement learning (DRL), a method of optimization based on teaching empirical strategies to an ANN through trial and error, is well adapted to solving such problems. In this short review, we offer an insight into the current state of the art of the use of DRL within fluid mechanics, focusing on control and optimal design problems.
ISSN:1001-6058
1878-0342
DOI:10.1007/s42241-020-0028-y