Loading…
Heat distribution model under hydrogen-rich low-carbon conditions in blast furnace
Low carbon development of blast furnaces is one of the key technological directions in the current development of ironmaking. Owing to the differences in the physical and chemical properties of hydrogen and carbon, hydrogen-rich media entering a blast furnace will change the heat distribution, thus...
Saved in:
Published in: | Journal of iron and steel research, international international, 2024-03, Vol.31 (3), p.584-594 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Low carbon development of blast furnaces is one of the key technological directions in the current development of ironmaking. Owing to the differences in the physical and chemical properties of hydrogen and carbon, hydrogen-rich media entering a blast furnace will change the heat distribution, thus affecting the stability of production. Accordingly, a heat distribution model was proposed to study the temperature distribution in a blast furnace, simultaneously considering gas–solid heat exchange, slag and iron melting, and chemical reactions. The model was used to analyze the temperature distribution of a 2300 m
3
blast furnace and was verified via comparison with actual production data. Subsequently, the effects of the injection rate of hydrogen-rich media, H
2
concentration, and oxygen enrichment rate of the blast on the temperature distribution were investigated. Results indicated that the increase in the injection rate of the hydrogen-rich media decreased the amount of direct reduction and led to an increase in the furnace temperature. Furthermore, an increase in the oxygen enrichment rate led to a decrease in the furnace temperature, but could reduce the solid fuel ratio, while the change in H
2
concentration had less effect on the temperature distribution. The combination of hydrogen-rich media injection and the increase in the oxygen enrichment rate would help to adjust the temperature distribution to the same level as the conventional blast furnace conditions. |
---|---|
ISSN: | 1006-706X 2210-3988 |
DOI: | 10.1007/s42243-023-01018-z |