Loading…
Novel electrospun polyvinyl alcohol/chitosan/polycaprolactone-diltiazem hydrochloride nanocomposite membranes for wound dressing applications
The importance of managing wound care lies in the skin’s vital function within the human body. The fabrication of effective materials for biomedical applications presents a significant challenge. The implementation of the electrospinning technique offers a potential solution for the development of b...
Saved in:
Published in: | Emergent materials (Online) 2024-06, Vol.7 (3), p.1103-1113 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The importance of managing wound care lies in the skin’s vital function within the human body. The fabrication of effective materials for biomedical applications presents a significant challenge. The implementation of the electrospinning technique offers a potential solution for the development of biological scaffolds. In the current study, the electrospinning technique was employed to effectively integrate diltiazem hydrochloride (DTH) into a polyvinyl alcohol/chitosan/polycaprolactone (PVA/CS/PCL) membrane at a concentration of 10% (w/w). The physicochemical and cellular characteristics of the nanocomposite material were subsequently evaluated in vitro. The outcome of the morphological analysis demonstrated that despite the decrease in nanofiber diameter resulting from the inclusion of DTH, the wound dressing remains in compliance with the necessary standards. The incorporation of PCL resulted in a noteworthy augmentation in tensile strength (1.58 ± 0.45 MPa), a reduction in degradation rate, could significantly control the rate of drug release, exhibiting nearly a 50% decrease. Moreover, DTH exhibited promise in the field of wound healing as it amplified wettability and mechanical properties, and fosters the viability, proliferation, and adherence of the cultured fibroblasts. Using this technique, an increased proportion of DTH can be successfully incorporated into the electrospun PVA/CS/PCL nanofibers without any adverse effects. The data obtained from the study suggests that a scaffold containing 10% w/w DTH-enriched PVA/CS/PCL possesses remarkable cytocompatibility and wound healing properties, thus presenting a promising candidate for future biomedical applications. |
---|---|
ISSN: | 2522-5731 2522-574X |
DOI: | 10.1007/s42247-024-00626-z |