Loading…
Hybrid quantum classical graph neural networks for particle track reconstruction
The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC (HL-LHC). This increase in luminosity will significantly increase the number of...
Saved in:
Published in: | Quantum machine intelligence 2021-12, Vol.3 (2), Article 29 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Quantum machine intelligence |
container_volume | 3 |
creator | Tüysüz, Cenk Rieger, Carla Novotny, Kristiane Demirköz, Bilge Dobos, Daniel Potamianos, Karolos Vallecorsa, Sofia Vlimant, Jean-Roch Forster, Richard |
description | The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC (HL-LHC). This increase in luminosity will significantly increase the number of particles interacting with the detector. The interaction of particles with a detector is referred to as “hit”. The HL-LHC will yield many more detector hits, which will pose a combinatorial challenge by using reconstruction algorithms to determine particle trajectories from those hits. This work explores the possibility of converting a novel graph neural network model, that can optimally take into account the sparse nature of the tracking detector data and their complex geometry, to a hybrid quantum-classical graph neural network that benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach. Also, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities, and compare their training performance in order to quantify the expected benefits. These results can be used to build a future road map to further develop circuit-based hybrid quantum-classical graph neural networks. |
doi_str_mv | 10.1007/s42484-021-00055-9 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42484_021_00055_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42484_021_00055_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWGpfwFNeIJpkJ7uboxS1QkEPeg7ZbFK33WbrJIv07V2tePQ0_8D_DcNHyLXgN4Lz6jaBhBoYl4JxzpVi-ozMpJLAQAs4_8u8vCSLlLZTSVYF1LyckZfVscGupR-jjXncU9fblDpne7pBe3in0Y84LdHnzwF3iYYB6cFi7lzvaUbrdhS9G2LKOLrcDfGKXATbJ7_4nXPy9nD_ulyx9fPj0_JuzVxRicwsaKiD06K2VokqNBJcyevQSmG9so0oqlaXKhQlFyBaLaFxoABc5Z1tZFvMiTzddTikhD6YA3Z7i0cjuPnWYk5azKTF_GgxeoKKE5Smctx4NNthxDj9-R_1BcFTZwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid quantum classical graph neural networks for particle track reconstruction</title><source>Springer Nature</source><creator>Tüysüz, Cenk ; Rieger, Carla ; Novotny, Kristiane ; Demirköz, Bilge ; Dobos, Daniel ; Potamianos, Karolos ; Vallecorsa, Sofia ; Vlimant, Jean-Roch ; Forster, Richard</creator><creatorcontrib>Tüysüz, Cenk ; Rieger, Carla ; Novotny, Kristiane ; Demirköz, Bilge ; Dobos, Daniel ; Potamianos, Karolos ; Vallecorsa, Sofia ; Vlimant, Jean-Roch ; Forster, Richard</creatorcontrib><description>The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC (HL-LHC). This increase in luminosity will significantly increase the number of particles interacting with the detector. The interaction of particles with a detector is referred to as “hit”. The HL-LHC will yield many more detector hits, which will pose a combinatorial challenge by using reconstruction algorithms to determine particle trajectories from those hits. This work explores the possibility of converting a novel graph neural network model, that can optimally take into account the sparse nature of the tracking detector data and their complex geometry, to a hybrid quantum-classical graph neural network that benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach. Also, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities, and compare their training performance in order to quantify the expected benefits. These results can be used to build a future road map to further develop circuit-based hybrid quantum-classical graph neural networks.</description><identifier>ISSN: 2524-4906</identifier><identifier>EISSN: 2524-4914</identifier><identifier>DOI: 10.1007/s42484-021-00055-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Engineering ; Quantum Information Technology ; Research Article ; Spintronics</subject><ispartof>Quantum machine intelligence, 2021-12, Vol.3 (2), Article 29</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3</citedby><cites>FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3</cites><orcidid>0000-0003-0257-9784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tüysüz, Cenk</creatorcontrib><creatorcontrib>Rieger, Carla</creatorcontrib><creatorcontrib>Novotny, Kristiane</creatorcontrib><creatorcontrib>Demirköz, Bilge</creatorcontrib><creatorcontrib>Dobos, Daniel</creatorcontrib><creatorcontrib>Potamianos, Karolos</creatorcontrib><creatorcontrib>Vallecorsa, Sofia</creatorcontrib><creatorcontrib>Vlimant, Jean-Roch</creatorcontrib><creatorcontrib>Forster, Richard</creatorcontrib><title>Hybrid quantum classical graph neural networks for particle track reconstruction</title><title>Quantum machine intelligence</title><addtitle>Quantum Mach. Intell</addtitle><description>The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC (HL-LHC). This increase in luminosity will significantly increase the number of particles interacting with the detector. The interaction of particles with a detector is referred to as “hit”. The HL-LHC will yield many more detector hits, which will pose a combinatorial challenge by using reconstruction algorithms to determine particle trajectories from those hits. This work explores the possibility of converting a novel graph neural network model, that can optimally take into account the sparse nature of the tracking detector data and their complex geometry, to a hybrid quantum-classical graph neural network that benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach. Also, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities, and compare their training performance in order to quantify the expected benefits. These results can be used to build a future road map to further develop circuit-based hybrid quantum-classical graph neural networks.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Engineering</subject><subject>Quantum Information Technology</subject><subject>Research Article</subject><subject>Spintronics</subject><issn>2524-4906</issn><issn>2524-4914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWGpfwFNeIJpkJ7uboxS1QkEPeg7ZbFK33WbrJIv07V2tePQ0_8D_DcNHyLXgN4Lz6jaBhBoYl4JxzpVi-ozMpJLAQAs4_8u8vCSLlLZTSVYF1LyckZfVscGupR-jjXncU9fblDpne7pBe3in0Y84LdHnzwF3iYYB6cFi7lzvaUbrdhS9G2LKOLrcDfGKXATbJ7_4nXPy9nD_ulyx9fPj0_JuzVxRicwsaKiD06K2VokqNBJcyevQSmG9so0oqlaXKhQlFyBaLaFxoABc5Z1tZFvMiTzddTikhD6YA3Z7i0cjuPnWYk5azKTF_GgxeoKKE5Smctx4NNthxDj9-R_1BcFTZwA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Tüysüz, Cenk</creator><creator>Rieger, Carla</creator><creator>Novotny, Kristiane</creator><creator>Demirköz, Bilge</creator><creator>Dobos, Daniel</creator><creator>Potamianos, Karolos</creator><creator>Vallecorsa, Sofia</creator><creator>Vlimant, Jean-Roch</creator><creator>Forster, Richard</creator><general>Springer International Publishing</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0257-9784</orcidid></search><sort><creationdate>20211201</creationdate><title>Hybrid quantum classical graph neural networks for particle track reconstruction</title><author>Tüysüz, Cenk ; Rieger, Carla ; Novotny, Kristiane ; Demirköz, Bilge ; Dobos, Daniel ; Potamianos, Karolos ; Vallecorsa, Sofia ; Vlimant, Jean-Roch ; Forster, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Engineering</topic><topic>Quantum Information Technology</topic><topic>Research Article</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tüysüz, Cenk</creatorcontrib><creatorcontrib>Rieger, Carla</creatorcontrib><creatorcontrib>Novotny, Kristiane</creatorcontrib><creatorcontrib>Demirköz, Bilge</creatorcontrib><creatorcontrib>Dobos, Daniel</creatorcontrib><creatorcontrib>Potamianos, Karolos</creatorcontrib><creatorcontrib>Vallecorsa, Sofia</creatorcontrib><creatorcontrib>Vlimant, Jean-Roch</creatorcontrib><creatorcontrib>Forster, Richard</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Quantum machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tüysüz, Cenk</au><au>Rieger, Carla</au><au>Novotny, Kristiane</au><au>Demirköz, Bilge</au><au>Dobos, Daniel</au><au>Potamianos, Karolos</au><au>Vallecorsa, Sofia</au><au>Vlimant, Jean-Roch</au><au>Forster, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid quantum classical graph neural networks for particle track reconstruction</atitle><jtitle>Quantum machine intelligence</jtitle><stitle>Quantum Mach. Intell</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>3</volume><issue>2</issue><artnum>29</artnum><issn>2524-4906</issn><eissn>2524-4914</eissn><abstract>The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC (HL-LHC). This increase in luminosity will significantly increase the number of particles interacting with the detector. The interaction of particles with a detector is referred to as “hit”. The HL-LHC will yield many more detector hits, which will pose a combinatorial challenge by using reconstruction algorithms to determine particle trajectories from those hits. This work explores the possibility of converting a novel graph neural network model, that can optimally take into account the sparse nature of the tracking detector data and their complex geometry, to a hybrid quantum-classical graph neural network that benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach. Also, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities, and compare their training performance in order to quantify the expected benefits. These results can be used to build a future road map to further develop circuit-based hybrid quantum-classical graph neural networks.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42484-021-00055-9</doi><orcidid>https://orcid.org/0000-0003-0257-9784</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2524-4906 |
ispartof | Quantum machine intelligence, 2021-12, Vol.3 (2), Article 29 |
issn | 2524-4906 2524-4914 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s42484_021_00055_9 |
source | Springer Nature |
subjects | Artificial Intelligence Computational Intelligence Engineering Quantum Information Technology Research Article Spintronics |
title | Hybrid quantum classical graph neural networks for particle track reconstruction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20quantum%20classical%20graph%20neural%20networks%20for%20particle%20track%20reconstruction&rft.jtitle=Quantum%20machine%20intelligence&rft.au=T%C3%BCys%C3%BCz,%20Cenk&rft.date=2021-12-01&rft.volume=3&rft.issue=2&rft.artnum=29&rft.issn=2524-4906&rft.eissn=2524-4914&rft_id=info:doi/10.1007/s42484-021-00055-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s42484_021_00055_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |