Loading…

Hybrid quantum classical graph neural networks for particle track reconstruction

The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC (HL-LHC). This increase in luminosity will significantly increase the number of...

Full description

Saved in:
Bibliographic Details
Published in:Quantum machine intelligence 2021-12, Vol.3 (2), Article 29
Main Authors: Tüysüz, Cenk, Rieger, Carla, Novotny, Kristiane, Demirköz, Bilge, Dobos, Daniel, Potamianos, Karolos, Vallecorsa, Sofia, Vlimant, Jean-Roch, Forster, Richard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3
cites cdi_FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3
container_end_page
container_issue 2
container_start_page
container_title Quantum machine intelligence
container_volume 3
creator Tüysüz, Cenk
Rieger, Carla
Novotny, Kristiane
Demirköz, Bilge
Dobos, Daniel
Potamianos, Karolos
Vallecorsa, Sofia
Vlimant, Jean-Roch
Forster, Richard
description The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC (HL-LHC). This increase in luminosity will significantly increase the number of particles interacting with the detector. The interaction of particles with a detector is referred to as “hit”. The HL-LHC will yield many more detector hits, which will pose a combinatorial challenge by using reconstruction algorithms to determine particle trajectories from those hits. This work explores the possibility of converting a novel graph neural network model, that can optimally take into account the sparse nature of the tracking detector data and their complex geometry, to a hybrid quantum-classical graph neural network that benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach. Also, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities, and compare their training performance in order to quantify the expected benefits. These results can be used to build a future road map to further develop circuit-based hybrid quantum-classical graph neural networks.
doi_str_mv 10.1007/s42484-021-00055-9
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42484_021_00055_9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42484_021_00055_9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWGpfwFNeIJpkJ7uboxS1QkEPeg7ZbFK33WbrJIv07V2tePQ0_8D_DcNHyLXgN4Lz6jaBhBoYl4JxzpVi-ozMpJLAQAs4_8u8vCSLlLZTSVYF1LyckZfVscGupR-jjXncU9fblDpne7pBe3in0Y84LdHnzwF3iYYB6cFi7lzvaUbrdhS9G2LKOLrcDfGKXATbJ7_4nXPy9nD_ulyx9fPj0_JuzVxRicwsaKiD06K2VokqNBJcyevQSmG9so0oqlaXKhQlFyBaLaFxoABc5Z1tZFvMiTzddTikhD6YA3Z7i0cjuPnWYk5azKTF_GgxeoKKE5Smctx4NNthxDj9-R_1BcFTZwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid quantum classical graph neural networks for particle track reconstruction</title><source>Springer Nature</source><creator>Tüysüz, Cenk ; Rieger, Carla ; Novotny, Kristiane ; Demirköz, Bilge ; Dobos, Daniel ; Potamianos, Karolos ; Vallecorsa, Sofia ; Vlimant, Jean-Roch ; Forster, Richard</creator><creatorcontrib>Tüysüz, Cenk ; Rieger, Carla ; Novotny, Kristiane ; Demirköz, Bilge ; Dobos, Daniel ; Potamianos, Karolos ; Vallecorsa, Sofia ; Vlimant, Jean-Roch ; Forster, Richard</creatorcontrib><description>The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC (HL-LHC). This increase in luminosity will significantly increase the number of particles interacting with the detector. The interaction of particles with a detector is referred to as “hit”. The HL-LHC will yield many more detector hits, which will pose a combinatorial challenge by using reconstruction algorithms to determine particle trajectories from those hits. This work explores the possibility of converting a novel graph neural network model, that can optimally take into account the sparse nature of the tracking detector data and their complex geometry, to a hybrid quantum-classical graph neural network that benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach. Also, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities, and compare their training performance in order to quantify the expected benefits. These results can be used to build a future road map to further develop circuit-based hybrid quantum-classical graph neural networks.</description><identifier>ISSN: 2524-4906</identifier><identifier>EISSN: 2524-4914</identifier><identifier>DOI: 10.1007/s42484-021-00055-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Engineering ; Quantum Information Technology ; Research Article ; Spintronics</subject><ispartof>Quantum machine intelligence, 2021-12, Vol.3 (2), Article 29</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3</citedby><cites>FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3</cites><orcidid>0000-0003-0257-9784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Tüysüz, Cenk</creatorcontrib><creatorcontrib>Rieger, Carla</creatorcontrib><creatorcontrib>Novotny, Kristiane</creatorcontrib><creatorcontrib>Demirköz, Bilge</creatorcontrib><creatorcontrib>Dobos, Daniel</creatorcontrib><creatorcontrib>Potamianos, Karolos</creatorcontrib><creatorcontrib>Vallecorsa, Sofia</creatorcontrib><creatorcontrib>Vlimant, Jean-Roch</creatorcontrib><creatorcontrib>Forster, Richard</creatorcontrib><title>Hybrid quantum classical graph neural networks for particle track reconstruction</title><title>Quantum machine intelligence</title><addtitle>Quantum Mach. Intell</addtitle><description>The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC (HL-LHC). This increase in luminosity will significantly increase the number of particles interacting with the detector. The interaction of particles with a detector is referred to as “hit”. The HL-LHC will yield many more detector hits, which will pose a combinatorial challenge by using reconstruction algorithms to determine particle trajectories from those hits. This work explores the possibility of converting a novel graph neural network model, that can optimally take into account the sparse nature of the tracking detector data and their complex geometry, to a hybrid quantum-classical graph neural network that benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach. Also, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities, and compare their training performance in order to quantify the expected benefits. These results can be used to build a future road map to further develop circuit-based hybrid quantum-classical graph neural networks.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Engineering</subject><subject>Quantum Information Technology</subject><subject>Research Article</subject><subject>Spintronics</subject><issn>2524-4906</issn><issn>2524-4914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWGpfwFNeIJpkJ7uboxS1QkEPeg7ZbFK33WbrJIv07V2tePQ0_8D_DcNHyLXgN4Lz6jaBhBoYl4JxzpVi-ozMpJLAQAs4_8u8vCSLlLZTSVYF1LyckZfVscGupR-jjXncU9fblDpne7pBe3in0Y84LdHnzwF3iYYB6cFi7lzvaUbrdhS9G2LKOLrcDfGKXATbJ7_4nXPy9nD_ulyx9fPj0_JuzVxRicwsaKiD06K2VokqNBJcyevQSmG9so0oqlaXKhQlFyBaLaFxoABc5Z1tZFvMiTzddTikhD6YA3Z7i0cjuPnWYk5azKTF_GgxeoKKE5Smctx4NNthxDj9-R_1BcFTZwA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Tüysüz, Cenk</creator><creator>Rieger, Carla</creator><creator>Novotny, Kristiane</creator><creator>Demirköz, Bilge</creator><creator>Dobos, Daniel</creator><creator>Potamianos, Karolos</creator><creator>Vallecorsa, Sofia</creator><creator>Vlimant, Jean-Roch</creator><creator>Forster, Richard</creator><general>Springer International Publishing</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0257-9784</orcidid></search><sort><creationdate>20211201</creationdate><title>Hybrid quantum classical graph neural networks for particle track reconstruction</title><author>Tüysüz, Cenk ; Rieger, Carla ; Novotny, Kristiane ; Demirköz, Bilge ; Dobos, Daniel ; Potamianos, Karolos ; Vallecorsa, Sofia ; Vlimant, Jean-Roch ; Forster, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Engineering</topic><topic>Quantum Information Technology</topic><topic>Research Article</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tüysüz, Cenk</creatorcontrib><creatorcontrib>Rieger, Carla</creatorcontrib><creatorcontrib>Novotny, Kristiane</creatorcontrib><creatorcontrib>Demirköz, Bilge</creatorcontrib><creatorcontrib>Dobos, Daniel</creatorcontrib><creatorcontrib>Potamianos, Karolos</creatorcontrib><creatorcontrib>Vallecorsa, Sofia</creatorcontrib><creatorcontrib>Vlimant, Jean-Roch</creatorcontrib><creatorcontrib>Forster, Richard</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Quantum machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tüysüz, Cenk</au><au>Rieger, Carla</au><au>Novotny, Kristiane</au><au>Demirköz, Bilge</au><au>Dobos, Daniel</au><au>Potamianos, Karolos</au><au>Vallecorsa, Sofia</au><au>Vlimant, Jean-Roch</au><au>Forster, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid quantum classical graph neural networks for particle track reconstruction</atitle><jtitle>Quantum machine intelligence</jtitle><stitle>Quantum Mach. Intell</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>3</volume><issue>2</issue><artnum>29</artnum><issn>2524-4906</issn><eissn>2524-4914</eissn><abstract>The Large Hadron Collider (LHC) at the European Organisation for Nuclear Research (CERN) will be upgraded to further increase the instantaneous rate of particle collisions (luminosity) and become the High Luminosity LHC (HL-LHC). This increase in luminosity will significantly increase the number of particles interacting with the detector. The interaction of particles with a detector is referred to as “hit”. The HL-LHC will yield many more detector hits, which will pose a combinatorial challenge by using reconstruction algorithms to determine particle trajectories from those hits. This work explores the possibility of converting a novel graph neural network model, that can optimally take into account the sparse nature of the tracking detector data and their complex geometry, to a hybrid quantum-classical graph neural network that benefits from using variational quantum layers. We show that this hybrid model can perform similar to the classical approach. Also, we explore parametrized quantum circuits (PQC) with different expressibility and entangling capacities, and compare their training performance in order to quantify the expected benefits. These results can be used to build a future road map to further develop circuit-based hybrid quantum-classical graph neural networks.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42484-021-00055-9</doi><orcidid>https://orcid.org/0000-0003-0257-9784</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2524-4906
ispartof Quantum machine intelligence, 2021-12, Vol.3 (2), Article 29
issn 2524-4906
2524-4914
language eng
recordid cdi_crossref_primary_10_1007_s42484_021_00055_9
source Springer Nature
subjects Artificial Intelligence
Computational Intelligence
Engineering
Quantum Information Technology
Research Article
Spintronics
title Hybrid quantum classical graph neural networks for particle track reconstruction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A07%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20quantum%20classical%20graph%20neural%20networks%20for%20particle%20track%20reconstruction&rft.jtitle=Quantum%20machine%20intelligence&rft.au=T%C3%BCys%C3%BCz,%20Cenk&rft.date=2021-12-01&rft.volume=3&rft.issue=2&rft.artnum=29&rft.issn=2524-4906&rft.eissn=2524-4914&rft_id=info:doi/10.1007/s42484-021-00055-9&rft_dat=%3Ccrossref_sprin%3E10_1007_s42484_021_00055_9%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-a4948fc918aa517fb24c608fd21ae5ab137d965f360141d924bc4544c7ecab2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true