Loading…

Design and Development of a Cold-Flow Test-Bench for Study of Advanced Nozzles in Subsonic Counter-Flows

As advanced nozzles may offer alternative solutions to conventional nozzles for the future class of reusable launch vehicles, a critical aspect is to tailor these novel technologies to current recovery strategies, more specifically to vertical landing sustained by retro-propulsion. Researchers at Te...

Full description

Saved in:
Bibliographic Details
Published in:Aerotecnica, missili e spazio missili e spazio, 2022-09, Vol.101 (3), p.201-213
Main Authors: Scarlatella, Giuseppe, Sieder-Katzmann, Jan, Roßberg, Florian, Weber, Felix, Mancera, Carlos T., Bianchi, Daniele, Tajmar, Martin, Bach, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As advanced nozzles may offer alternative solutions to conventional nozzles for the future class of reusable launch vehicles, a critical aspect is to tailor these novel technologies to current recovery strategies, more specifically to vertical landing sustained by retro-propulsion. Researchers at Technische Universität Dresden have developed a dedicated test-bench for the vacuum wind tunnel facility, where Advanced Nozzle Concepts (ANCs), such as aerospike and dual-bell nozzles, are tested in cold-gas configuration while invested by subsonic counter-flows. The main objective of the test campaign is to evaluate the performance and altitude–compensation characteristics of such ANCs by simulating a vertical landing manoeuvre through the variation of ambient pressure experienced during the landing burn. A detailed description of design and development of the test-bench, together with preliminary results from the commissioning activities, are here offered to the reader. The force measurements, together with pressure and temperature data, contribute to evaluate thrust levels and coefficients, as well as the monitoring of the interaction between the nozzle cold-flow and the opposing free-stream. A background-oriented schlieren system allows to visualise the external flow-field. In conclusion, an outline of the upcoming test campaign and a description of the expected results is offered.
ISSN:0365-7442
2524-6968
DOI:10.1007/s42496-022-00117-6