Loading…
Heterogeneous tail generalized common factor modeling
A multivariate normal mean–variance heterogeneous tails mixture distribution is proposed for the joint distribution of financial factors and asset returns (referred to as Factor-HGH). The proposed latent variable model incorporates a Cholesky decomposition of the dispersion matrix to ensure a rich d...
Saved in:
Published in: | Digital finance 2023, Vol.5 (2), p.389-420 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3 |
container_end_page | 420 |
container_issue | 2 |
container_start_page | 389 |
container_title | Digital finance |
container_volume | 5 |
creator | Hediger, Simon Näf, Jeffrey Paolella, Marc S. Polak, Paweł |
description | A multivariate normal mean–variance heterogeneous tails mixture distribution is proposed for the joint distribution of financial factors and asset returns (referred to as Factor-HGH). The proposed latent variable model incorporates a Cholesky decomposition of the dispersion matrix to ensure a rich dependency structure for capturing the stylized facts of the data. It generalizes several existing model structures, with or without financial factors. It is further applicable in large dimensions due to a fast ECME estimation algorithm. The advantages of modelling financial factors and asset returns jointly under non-Gaussian errors are illustrated in an empirical comparison study between the proposed Factor-HGH model and classical financial factor models. While the results for the Fama–French 49 industry portfolios are in line with Gaussian-based models, in the case of highly tail heterogeneous cryptocurrencies, the portfolio based on the Factor-HGH model almost doubles the average return while keeping the volatility, the maximum drawdown, the turnover, and the expected shortfall at a low level. |
doi_str_mv | 10.1007/s42521-023-00083-z |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42521_023_00083_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42521_023_00083_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EElXpD7DKDxj8ih9LVAFFqsQG1tbEsaNUSYzsdkG-HpfAtqt56N65cxC6p-SBEqIes2A1o5gwjgkhmuP5Cq3KSmBJtbz-740Wt2iT86GImKKESbJC9c4ffYqdn3w85eoI_VCdhwRDP_u2cnEc41QFcMeYqjG2fuin7g7dBBiy3_zVNfp8ef7Y7vD-_fVt-7THjnE145LOqRRKBVAgDEjGGq0bR6FVUtSaGeA01NI0AQw1tfON584xBVw6Hhq-Rmy561LMOflgv1I_Qvq2lNgzu13YbWG3v-x2Lia-mHIRT51P9hBPaSp_XnL9AC63XQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heterogeneous tail generalized common factor modeling</title><source>Springer Nature</source><creator>Hediger, Simon ; Näf, Jeffrey ; Paolella, Marc S. ; Polak, Paweł</creator><creatorcontrib>Hediger, Simon ; Näf, Jeffrey ; Paolella, Marc S. ; Polak, Paweł</creatorcontrib><description>A multivariate normal mean–variance heterogeneous tails mixture distribution is proposed for the joint distribution of financial factors and asset returns (referred to as Factor-HGH). The proposed latent variable model incorporates a Cholesky decomposition of the dispersion matrix to ensure a rich dependency structure for capturing the stylized facts of the data. It generalizes several existing model structures, with or without financial factors. It is further applicable in large dimensions due to a fast ECME estimation algorithm. The advantages of modelling financial factors and asset returns jointly under non-Gaussian errors are illustrated in an empirical comparison study between the proposed Factor-HGH model and classical financial factor models. While the results for the Fama–French 49 industry portfolios are in line with Gaussian-based models, in the case of highly tail heterogeneous cryptocurrencies, the portfolio based on the Factor-HGH model almost doubles the average return while keeping the volatility, the maximum drawdown, the turnover, and the expected shortfall at a low level.</description><identifier>ISSN: 2524-6984</identifier><identifier>EISSN: 2524-6186</identifier><identifier>DOI: 10.1007/s42521-023-00083-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Banking ; Business Finance ; Economics and Finance ; Finance ; Macroeconomics/Monetary Economics//Financial Economics ; Original Article</subject><ispartof>Digital finance, 2023, Vol.5 (2), p.389-420</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3</citedby><cites>FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hediger, Simon</creatorcontrib><creatorcontrib>Näf, Jeffrey</creatorcontrib><creatorcontrib>Paolella, Marc S.</creatorcontrib><creatorcontrib>Polak, Paweł</creatorcontrib><title>Heterogeneous tail generalized common factor modeling</title><title>Digital finance</title><addtitle>Digit Finance</addtitle><description>A multivariate normal mean–variance heterogeneous tails mixture distribution is proposed for the joint distribution of financial factors and asset returns (referred to as Factor-HGH). The proposed latent variable model incorporates a Cholesky decomposition of the dispersion matrix to ensure a rich dependency structure for capturing the stylized facts of the data. It generalizes several existing model structures, with or without financial factors. It is further applicable in large dimensions due to a fast ECME estimation algorithm. The advantages of modelling financial factors and asset returns jointly under non-Gaussian errors are illustrated in an empirical comparison study between the proposed Factor-HGH model and classical financial factor models. While the results for the Fama–French 49 industry portfolios are in line with Gaussian-based models, in the case of highly tail heterogeneous cryptocurrencies, the portfolio based on the Factor-HGH model almost doubles the average return while keeping the volatility, the maximum drawdown, the turnover, and the expected shortfall at a low level.</description><subject>Banking</subject><subject>Business Finance</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Macroeconomics/Monetary Economics//Financial Economics</subject><subject>Original Article</subject><issn>2524-6984</issn><issn>2524-6186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EElXpD7DKDxj8ih9LVAFFqsQG1tbEsaNUSYzsdkG-HpfAtqt56N65cxC6p-SBEqIes2A1o5gwjgkhmuP5Cq3KSmBJtbz-740Wt2iT86GImKKESbJC9c4ffYqdn3w85eoI_VCdhwRDP_u2cnEc41QFcMeYqjG2fuin7g7dBBiy3_zVNfp8ef7Y7vD-_fVt-7THjnE145LOqRRKBVAgDEjGGq0bR6FVUtSaGeA01NI0AQw1tfON584xBVw6Hhq-Rmy561LMOflgv1I_Qvq2lNgzu13YbWG3v-x2Lia-mHIRT51P9hBPaSp_XnL9AC63XQo</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Hediger, Simon</creator><creator>Näf, Jeffrey</creator><creator>Paolella, Marc S.</creator><creator>Polak, Paweł</creator><general>Springer International Publishing</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Heterogeneous tail generalized common factor modeling</title><author>Hediger, Simon ; Näf, Jeffrey ; Paolella, Marc S. ; Polak, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banking</topic><topic>Business Finance</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Macroeconomics/Monetary Economics//Financial Economics</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hediger, Simon</creatorcontrib><creatorcontrib>Näf, Jeffrey</creatorcontrib><creatorcontrib>Paolella, Marc S.</creatorcontrib><creatorcontrib>Polak, Paweł</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Digital finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hediger, Simon</au><au>Näf, Jeffrey</au><au>Paolella, Marc S.</au><au>Polak, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous tail generalized common factor modeling</atitle><jtitle>Digital finance</jtitle><stitle>Digit Finance</stitle><date>2023</date><risdate>2023</risdate><volume>5</volume><issue>2</issue><spage>389</spage><epage>420</epage><pages>389-420</pages><issn>2524-6984</issn><eissn>2524-6186</eissn><abstract>A multivariate normal mean–variance heterogeneous tails mixture distribution is proposed for the joint distribution of financial factors and asset returns (referred to as Factor-HGH). The proposed latent variable model incorporates a Cholesky decomposition of the dispersion matrix to ensure a rich dependency structure for capturing the stylized facts of the data. It generalizes several existing model structures, with or without financial factors. It is further applicable in large dimensions due to a fast ECME estimation algorithm. The advantages of modelling financial factors and asset returns jointly under non-Gaussian errors are illustrated in an empirical comparison study between the proposed Factor-HGH model and classical financial factor models. While the results for the Fama–French 49 industry portfolios are in line with Gaussian-based models, in the case of highly tail heterogeneous cryptocurrencies, the portfolio based on the Factor-HGH model almost doubles the average return while keeping the volatility, the maximum drawdown, the turnover, and the expected shortfall at a low level.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42521-023-00083-z</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2524-6984 |
ispartof | Digital finance, 2023, Vol.5 (2), p.389-420 |
issn | 2524-6984 2524-6186 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s42521_023_00083_z |
source | Springer Nature |
subjects | Banking Business Finance Economics and Finance Finance Macroeconomics/Monetary Economics//Financial Economics Original Article |
title | Heterogeneous tail generalized common factor modeling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20tail%20generalized%20common%20factor%20modeling&rft.jtitle=Digital%20finance&rft.au=Hediger,%20Simon&rft.date=2023&rft.volume=5&rft.issue=2&rft.spage=389&rft.epage=420&rft.pages=389-420&rft.issn=2524-6984&rft.eissn=2524-6186&rft_id=info:doi/10.1007/s42521-023-00083-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s42521_023_00083_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |