Loading…

Heterogeneous tail generalized common factor modeling

A multivariate normal mean–variance heterogeneous tails mixture distribution is proposed for the joint distribution of financial factors and asset returns (referred to as Factor-HGH). The proposed latent variable model incorporates a Cholesky decomposition of the dispersion matrix to ensure a rich d...

Full description

Saved in:
Bibliographic Details
Published in:Digital finance 2023, Vol.5 (2), p.389-420
Main Authors: Hediger, Simon, Näf, Jeffrey, Paolella, Marc S., Polak, Paweł
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3
cites cdi_FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3
container_end_page 420
container_issue 2
container_start_page 389
container_title Digital finance
container_volume 5
creator Hediger, Simon
Näf, Jeffrey
Paolella, Marc S.
Polak, Paweł
description A multivariate normal mean–variance heterogeneous tails mixture distribution is proposed for the joint distribution of financial factors and asset returns (referred to as Factor-HGH). The proposed latent variable model incorporates a Cholesky decomposition of the dispersion matrix to ensure a rich dependency structure for capturing the stylized facts of the data. It generalizes several existing model structures, with or without financial factors. It is further applicable in large dimensions due to a fast ECME estimation algorithm. The advantages of modelling financial factors and asset returns jointly under non-Gaussian errors are illustrated in an empirical comparison study between the proposed Factor-HGH model and classical financial factor models. While the results for the Fama–French 49 industry portfolios are in line with Gaussian-based models, in the case of highly tail heterogeneous cryptocurrencies, the portfolio based on the Factor-HGH model almost doubles the average return while keeping the volatility, the maximum drawdown, the turnover, and the expected shortfall at a low level.
doi_str_mv 10.1007/s42521-023-00083-z
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42521_023_00083_z</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42521_023_00083_z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3</originalsourceid><addsrcrecordid>eNp9j8tOwzAQRS0EElXpD7DKDxj8ih9LVAFFqsQG1tbEsaNUSYzsdkG-HpfAtqt56N65cxC6p-SBEqIes2A1o5gwjgkhmuP5Cq3KSmBJtbz-740Wt2iT86GImKKESbJC9c4ffYqdn3w85eoI_VCdhwRDP_u2cnEc41QFcMeYqjG2fuin7g7dBBiy3_zVNfp8ef7Y7vD-_fVt-7THjnE145LOqRRKBVAgDEjGGq0bR6FVUtSaGeA01NI0AQw1tfON584xBVw6Hhq-Rmy561LMOflgv1I_Qvq2lNgzu13YbWG3v-x2Lia-mHIRT51P9hBPaSp_XnL9AC63XQo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Heterogeneous tail generalized common factor modeling</title><source>Springer Nature</source><creator>Hediger, Simon ; Näf, Jeffrey ; Paolella, Marc S. ; Polak, Paweł</creator><creatorcontrib>Hediger, Simon ; Näf, Jeffrey ; Paolella, Marc S. ; Polak, Paweł</creatorcontrib><description>A multivariate normal mean–variance heterogeneous tails mixture distribution is proposed for the joint distribution of financial factors and asset returns (referred to as Factor-HGH). The proposed latent variable model incorporates a Cholesky decomposition of the dispersion matrix to ensure a rich dependency structure for capturing the stylized facts of the data. It generalizes several existing model structures, with or without financial factors. It is further applicable in large dimensions due to a fast ECME estimation algorithm. The advantages of modelling financial factors and asset returns jointly under non-Gaussian errors are illustrated in an empirical comparison study between the proposed Factor-HGH model and classical financial factor models. While the results for the Fama–French 49 industry portfolios are in line with Gaussian-based models, in the case of highly tail heterogeneous cryptocurrencies, the portfolio based on the Factor-HGH model almost doubles the average return while keeping the volatility, the maximum drawdown, the turnover, and the expected shortfall at a low level.</description><identifier>ISSN: 2524-6984</identifier><identifier>EISSN: 2524-6186</identifier><identifier>DOI: 10.1007/s42521-023-00083-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Banking ; Business Finance ; Economics and Finance ; Finance ; Macroeconomics/Monetary Economics//Financial Economics ; Original Article</subject><ispartof>Digital finance, 2023, Vol.5 (2), p.389-420</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3</citedby><cites>FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hediger, Simon</creatorcontrib><creatorcontrib>Näf, Jeffrey</creatorcontrib><creatorcontrib>Paolella, Marc S.</creatorcontrib><creatorcontrib>Polak, Paweł</creatorcontrib><title>Heterogeneous tail generalized common factor modeling</title><title>Digital finance</title><addtitle>Digit Finance</addtitle><description>A multivariate normal mean–variance heterogeneous tails mixture distribution is proposed for the joint distribution of financial factors and asset returns (referred to as Factor-HGH). The proposed latent variable model incorporates a Cholesky decomposition of the dispersion matrix to ensure a rich dependency structure for capturing the stylized facts of the data. It generalizes several existing model structures, with or without financial factors. It is further applicable in large dimensions due to a fast ECME estimation algorithm. The advantages of modelling financial factors and asset returns jointly under non-Gaussian errors are illustrated in an empirical comparison study between the proposed Factor-HGH model and classical financial factor models. While the results for the Fama–French 49 industry portfolios are in line with Gaussian-based models, in the case of highly tail heterogeneous cryptocurrencies, the portfolio based on the Factor-HGH model almost doubles the average return while keeping the volatility, the maximum drawdown, the turnover, and the expected shortfall at a low level.</description><subject>Banking</subject><subject>Business Finance</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Macroeconomics/Monetary Economics//Financial Economics</subject><subject>Original Article</subject><issn>2524-6984</issn><issn>2524-6186</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j8tOwzAQRS0EElXpD7DKDxj8ih9LVAFFqsQG1tbEsaNUSYzsdkG-HpfAtqt56N65cxC6p-SBEqIes2A1o5gwjgkhmuP5Cq3KSmBJtbz-740Wt2iT86GImKKESbJC9c4ffYqdn3w85eoI_VCdhwRDP_u2cnEc41QFcMeYqjG2fuin7g7dBBiy3_zVNfp8ef7Y7vD-_fVt-7THjnE145LOqRRKBVAgDEjGGq0bR6FVUtSaGeA01NI0AQw1tfON584xBVw6Hhq-Rmy561LMOflgv1I_Qvq2lNgzu13YbWG3v-x2Lia-mHIRT51P9hBPaSp_XnL9AC63XQo</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Hediger, Simon</creator><creator>Näf, Jeffrey</creator><creator>Paolella, Marc S.</creator><creator>Polak, Paweł</creator><general>Springer International Publishing</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>Heterogeneous tail generalized common factor modeling</title><author>Hediger, Simon ; Näf, Jeffrey ; Paolella, Marc S. ; Polak, Paweł</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banking</topic><topic>Business Finance</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Macroeconomics/Monetary Economics//Financial Economics</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hediger, Simon</creatorcontrib><creatorcontrib>Näf, Jeffrey</creatorcontrib><creatorcontrib>Paolella, Marc S.</creatorcontrib><creatorcontrib>Polak, Paweł</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>Digital finance</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hediger, Simon</au><au>Näf, Jeffrey</au><au>Paolella, Marc S.</au><au>Polak, Paweł</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous tail generalized common factor modeling</atitle><jtitle>Digital finance</jtitle><stitle>Digit Finance</stitle><date>2023</date><risdate>2023</risdate><volume>5</volume><issue>2</issue><spage>389</spage><epage>420</epage><pages>389-420</pages><issn>2524-6984</issn><eissn>2524-6186</eissn><abstract>A multivariate normal mean–variance heterogeneous tails mixture distribution is proposed for the joint distribution of financial factors and asset returns (referred to as Factor-HGH). The proposed latent variable model incorporates a Cholesky decomposition of the dispersion matrix to ensure a rich dependency structure for capturing the stylized facts of the data. It generalizes several existing model structures, with or without financial factors. It is further applicable in large dimensions due to a fast ECME estimation algorithm. The advantages of modelling financial factors and asset returns jointly under non-Gaussian errors are illustrated in an empirical comparison study between the proposed Factor-HGH model and classical financial factor models. While the results for the Fama–French 49 industry portfolios are in line with Gaussian-based models, in the case of highly tail heterogeneous cryptocurrencies, the portfolio based on the Factor-HGH model almost doubles the average return while keeping the volatility, the maximum drawdown, the turnover, and the expected shortfall at a low level.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42521-023-00083-z</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2524-6984
ispartof Digital finance, 2023, Vol.5 (2), p.389-420
issn 2524-6984
2524-6186
language eng
recordid cdi_crossref_primary_10_1007_s42521_023_00083_z
source Springer Nature
subjects Banking
Business Finance
Economics and Finance
Finance
Macroeconomics/Monetary Economics//Financial Economics
Original Article
title Heterogeneous tail generalized common factor modeling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A41%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20tail%20generalized%20common%20factor%20modeling&rft.jtitle=Digital%20finance&rft.au=Hediger,%20Simon&rft.date=2023&rft.volume=5&rft.issue=2&rft.spage=389&rft.epage=420&rft.pages=389-420&rft.issn=2524-6984&rft.eissn=2524-6186&rft_id=info:doi/10.1007/s42521-023-00083-z&rft_dat=%3Ccrossref_sprin%3E10_1007_s42521_023_00083_z%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237z-186316477fa7a49a622b88bc1ad7645829a31f569bfa9195cebe3cc27a36c3fb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true