Loading…
Bifurcations and dynamical behaviors for a generalized delayed-diffusive Maginu model
This paper is committed to study the dynamical behaviors of a generalized Maginu model with discrete time delay. We investigate the stability of the positive equilibrium and the existence of periodic solutions bifurcating from the positive equilibrium. Further, by using the center manifold theorem a...
Saved in:
Published in: | SN partial differential equations and applications 2024-06, Vol.5 (3), Article 12 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c242t-52b76213eae3b00bf0a70bd058787eff260083afb325631858ff1dcfc7c1c8be3 |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | SN partial differential equations and applications |
container_volume | 5 |
creator | Ju, Xiaowei |
description | This paper is committed to study the dynamical behaviors of a generalized Maginu model with discrete time delay. We investigate the stability of the positive equilibrium and the existence of periodic solutions bifurcating from the positive equilibrium. Further, by using the center manifold theorem and the normal form theory, we derive the precise condition to judge the bifurcation direction and the stability of the bifurcating periodic solutions. Also, we deduce the exact condition to determine the Turing instability of the Hopf bifurcating periodic solutions for diffusive system. Numerical simulations are used to support our theoretical analysis. |
doi_str_mv | 10.1007/s42985-024-00282-2 |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s42985_024_00282_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s42985_024_00282_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-52b76213eae3b00bf0a70bd058787eff260083afb325631858ff1dcfc7c1c8be3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKf8gdVJsrvJHrX4BRUv9hyS7KRGtllJuoX6641WPHqaF-Z9huEh5JLBFQOQ17nmnWoq4HUFwBWv-AmZ8bYtoZPs9C-34pwscg4WmroTTKpuRta3wU_JmV0YY6Ym9rQ_RLMNzgzU4pvZhzFl6sdEDd1gxGSG8ImlhYM5YF_1wfsphz3SZ7MJcaLbsawuyJk3Q8bF75yT9f3d6_KxWr08PC1vVpXjNd9VDbey5UygQWEBrAcjwfbQKKkkes9bACWMt4I3rWCqUd6z3nknHXPKopgTfrzr0phzQq8_UtiadNAM9LcbfXSjixv940bzAokjlEs5bjDp93FKsfz5H_UF6JRonQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bifurcations and dynamical behaviors for a generalized delayed-diffusive Maginu model</title><source>Springer Nature</source><creator>Ju, Xiaowei</creator><creatorcontrib>Ju, Xiaowei</creatorcontrib><description>This paper is committed to study the dynamical behaviors of a generalized Maginu model with discrete time delay. We investigate the stability of the positive equilibrium and the existence of periodic solutions bifurcating from the positive equilibrium. Further, by using the center manifold theorem and the normal form theory, we derive the precise condition to judge the bifurcation direction and the stability of the bifurcating periodic solutions. Also, we deduce the exact condition to determine the Turing instability of the Hopf bifurcating periodic solutions for diffusive system. Numerical simulations are used to support our theoretical analysis.</description><identifier>ISSN: 2662-2963</identifier><identifier>EISSN: 2662-2971</identifier><identifier>DOI: 10.1007/s42985-024-00282-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>1. Theory of PDEs ; Analysis ; Mathematical and Computational Biology ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Original Paper ; Partial Differential Equations ; Theoretical</subject><ispartof>SN partial differential equations and applications, 2024-06, Vol.5 (3), Article 12</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c242t-52b76213eae3b00bf0a70bd058787eff260083afb325631858ff1dcfc7c1c8be3</cites><orcidid>0000-0003-3271-7623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ju, Xiaowei</creatorcontrib><title>Bifurcations and dynamical behaviors for a generalized delayed-diffusive Maginu model</title><title>SN partial differential equations and applications</title><addtitle>Partial Differ. Equ. Appl</addtitle><description>This paper is committed to study the dynamical behaviors of a generalized Maginu model with discrete time delay. We investigate the stability of the positive equilibrium and the existence of periodic solutions bifurcating from the positive equilibrium. Further, by using the center manifold theorem and the normal form theory, we derive the precise condition to judge the bifurcation direction and the stability of the bifurcating periodic solutions. Also, we deduce the exact condition to determine the Turing instability of the Hopf bifurcating periodic solutions for diffusive system. Numerical simulations are used to support our theoretical analysis.</description><subject>1. Theory of PDEs</subject><subject>Analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Original Paper</subject><subject>Partial Differential Equations</subject><subject>Theoretical</subject><issn>2662-2963</issn><issn>2662-2971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKf8gdVJsrvJHrX4BRUv9hyS7KRGtllJuoX6641WPHqaF-Z9huEh5JLBFQOQ17nmnWoq4HUFwBWv-AmZ8bYtoZPs9C-34pwscg4WmroTTKpuRta3wU_JmV0YY6Ym9rQ_RLMNzgzU4pvZhzFl6sdEDd1gxGSG8ImlhYM5YF_1wfsphz3SZ7MJcaLbsawuyJk3Q8bF75yT9f3d6_KxWr08PC1vVpXjNd9VDbey5UygQWEBrAcjwfbQKKkkes9bACWMt4I3rWCqUd6z3nknHXPKopgTfrzr0phzQq8_UtiadNAM9LcbfXSjixv940bzAokjlEs5bjDp93FKsfz5H_UF6JRonQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ju, Xiaowei</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3271-7623</orcidid></search><sort><creationdate>20240601</creationdate><title>Bifurcations and dynamical behaviors for a generalized delayed-diffusive Maginu model</title><author>Ju, Xiaowei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-52b76213eae3b00bf0a70bd058787eff260083afb325631858ff1dcfc7c1c8be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>1. Theory of PDEs</topic><topic>Analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Original Paper</topic><topic>Partial Differential Equations</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Xiaowei</creatorcontrib><collection>CrossRef</collection><jtitle>SN partial differential equations and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Xiaowei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcations and dynamical behaviors for a generalized delayed-diffusive Maginu model</atitle><jtitle>SN partial differential equations and applications</jtitle><stitle>Partial Differ. Equ. Appl</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>5</volume><issue>3</issue><artnum>12</artnum><issn>2662-2963</issn><eissn>2662-2971</eissn><abstract>This paper is committed to study the dynamical behaviors of a generalized Maginu model with discrete time delay. We investigate the stability of the positive equilibrium and the existence of periodic solutions bifurcating from the positive equilibrium. Further, by using the center manifold theorem and the normal form theory, we derive the precise condition to judge the bifurcation direction and the stability of the bifurcating periodic solutions. Also, we deduce the exact condition to determine the Turing instability of the Hopf bifurcating periodic solutions for diffusive system. Numerical simulations are used to support our theoretical analysis.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42985-024-00282-2</doi><orcidid>https://orcid.org/0000-0003-3271-7623</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-2963 |
ispartof | SN partial differential equations and applications, 2024-06, Vol.5 (3), Article 12 |
issn | 2662-2963 2662-2971 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s42985_024_00282_2 |
source | Springer Nature |
subjects | 1. Theory of PDEs Analysis Mathematical and Computational Biology Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Numerical Analysis Original Paper Partial Differential Equations Theoretical |
title | Bifurcations and dynamical behaviors for a generalized delayed-diffusive Maginu model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T19%3A50%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcations%20and%20dynamical%20behaviors%20for%20a%20generalized%20delayed-diffusive%20Maginu%20model&rft.jtitle=SN%20partial%20differential%20equations%20and%20applications&rft.au=Ju,%20Xiaowei&rft.date=2024-06-01&rft.volume=5&rft.issue=3&rft.artnum=12&rft.issn=2662-2963&rft.eissn=2662-2971&rft_id=info:doi/10.1007/s42985-024-00282-2&rft_dat=%3Ccrossref_sprin%3E10_1007_s42985_024_00282_2%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-52b76213eae3b00bf0a70bd058787eff260083afb325631858ff1dcfc7c1c8be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |