Loading…

Some matrix equations involving the weighted geometric mean

In this paper, we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those...

Full description

Saved in:
Bibliographic Details
Published in:Advances in operator theory 2022, Vol.7 (1), Article 2
Main Authors: Dinh, Trung Hoa, Le, Cong Trinh, Le, Xuan Dai, Pham, Tuan Cuong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23
cites cdi_FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23
container_end_page
container_issue 1
container_start_page
container_title Advances in operator theory
container_volume 7
creator Dinh, Trung Hoa
Le, Cong Trinh
Le, Xuan Dai
Pham, Tuan Cuong
description In this paper, we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those equations and prove the corresponding convergence. Another equations with a different matrix generalization of the weighted geometric mean for scalars are also discussed.
doi_str_mv 10.1007/s43036-021-00165-y
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s43036_021_00165_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s43036_021_00165_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKf8gehk0mQTPEnxCwQPKngL6e7sdkt3V5Nttf_eaD17mnfgeYfhYexcwoUEKC7TXIEyAlAKAGm02B-xCWplBaJ-O87ZGBQI4E7ZLKU1ACAoZxAm7Op56Ih3YYztF6ePbRjboU-87XfDZtf2DR9XxD-pbVYjVbyhTGe05B2F_oyd1GGTaPY3p-z19uZlcS8en-4eFtePokQnRzG3AV1R69rV0i7nlXHGULCkC8gLBq1BqsoZ0tZSYbQtpSSpl6YqJFQlqinDw90yDilFqv17bLsQ916C_zHgDwZ8NuB_Dfh9LqlDKWW4byj69bCNff7zv9Y3nuFenQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some matrix equations involving the weighted geometric mean</title><source>Freely Accessible Science Journals</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Dinh, Trung Hoa ; Le, Cong Trinh ; Le, Xuan Dai ; Pham, Tuan Cuong</creator><creatorcontrib>Dinh, Trung Hoa ; Le, Cong Trinh ; Le, Xuan Dai ; Pham, Tuan Cuong</creatorcontrib><description>In this paper, we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those equations and prove the corresponding convergence. Another equations with a different matrix generalization of the weighted geometric mean for scalars are also discussed.</description><identifier>ISSN: 2662-2009</identifier><identifier>EISSN: 2538-225X</identifier><identifier>DOI: 10.1007/s43036-021-00165-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Operator Theory ; Original Paper</subject><ispartof>Advances in operator theory, 2022, Vol.7 (1), Article 2</ispartof><rights>Tusi Mathematical Research Group (TMRG) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23</citedby><cites>FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dinh, Trung Hoa</creatorcontrib><creatorcontrib>Le, Cong Trinh</creatorcontrib><creatorcontrib>Le, Xuan Dai</creatorcontrib><creatorcontrib>Pham, Tuan Cuong</creatorcontrib><title>Some matrix equations involving the weighted geometric mean</title><title>Advances in operator theory</title><addtitle>Adv. Oper. Theory</addtitle><description>In this paper, we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those equations and prove the corresponding convergence. Another equations with a different matrix generalization of the weighted geometric mean for scalars are also discussed.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Original Paper</subject><issn>2662-2009</issn><issn>2538-225X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKf8gehk0mQTPEnxCwQPKngL6e7sdkt3V5Nttf_eaD17mnfgeYfhYexcwoUEKC7TXIEyAlAKAGm02B-xCWplBaJ-O87ZGBQI4E7ZLKU1ACAoZxAm7Op56Ih3YYztF6ePbRjboU-87XfDZtf2DR9XxD-pbVYjVbyhTGe05B2F_oyd1GGTaPY3p-z19uZlcS8en-4eFtePokQnRzG3AV1R69rV0i7nlXHGULCkC8gLBq1BqsoZ0tZSYbQtpSSpl6YqJFQlqinDw90yDilFqv17bLsQ916C_zHgDwZ8NuB_Dfh9LqlDKWW4byj69bCNff7zv9Y3nuFenQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dinh, Trung Hoa</creator><creator>Le, Cong Trinh</creator><creator>Le, Xuan Dai</creator><creator>Pham, Tuan Cuong</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Some matrix equations involving the weighted geometric mean</title><author>Dinh, Trung Hoa ; Le, Cong Trinh ; Le, Xuan Dai ; Pham, Tuan Cuong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinh, Trung Hoa</creatorcontrib><creatorcontrib>Le, Cong Trinh</creatorcontrib><creatorcontrib>Le, Xuan Dai</creatorcontrib><creatorcontrib>Pham, Tuan Cuong</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinh, Trung Hoa</au><au>Le, Cong Trinh</au><au>Le, Xuan Dai</au><au>Pham, Tuan Cuong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some matrix equations involving the weighted geometric mean</atitle><jtitle>Advances in operator theory</jtitle><stitle>Adv. Oper. Theory</stitle><date>2022</date><risdate>2022</risdate><volume>7</volume><issue>1</issue><artnum>2</artnum><issn>2662-2009</issn><eissn>2538-225X</eissn><abstract>In this paper, we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those equations and prove the corresponding convergence. Another equations with a different matrix generalization of the weighted geometric mean for scalars are also discussed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s43036-021-00165-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 2662-2009
ispartof Advances in operator theory, 2022, Vol.7 (1), Article 2
issn 2662-2009
2538-225X
language eng
recordid cdi_crossref_primary_10_1007_s43036_021_00165_y
source Freely Accessible Science Journals; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Mathematics
Mathematics and Statistics
Operator Theory
Original Paper
title Some matrix equations involving the weighted geometric mean
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20matrix%20equations%20involving%20the%20weighted%20geometric%20mean&rft.jtitle=Advances%20in%20operator%20theory&rft.au=Dinh,%20Trung%20Hoa&rft.date=2022&rft.volume=7&rft.issue=1&rft.artnum=2&rft.issn=2662-2009&rft.eissn=2538-225X&rft_id=info:doi/10.1007/s43036-021-00165-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s43036_021_00165_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true