Loading…
Some matrix equations involving the weighted geometric mean
In this paper, we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those...
Saved in:
Published in: | Advances in operator theory 2022, Vol.7 (1), Article 2 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Advances in operator theory |
container_volume | 7 |
creator | Dinh, Trung Hoa Le, Cong Trinh Le, Xuan Dai Pham, Tuan Cuong |
description | In this paper, we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those equations and prove the corresponding convergence. Another equations with a different matrix generalization of the weighted geometric mean for scalars are also discussed. |
doi_str_mv | 10.1007/s43036-021-00165-y |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s43036_021_00165_y</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s43036_021_00165_y</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKf8gehk0mQTPEnxCwQPKngL6e7sdkt3V5Nttf_eaD17mnfgeYfhYexcwoUEKC7TXIEyAlAKAGm02B-xCWplBaJ-O87ZGBQI4E7ZLKU1ACAoZxAm7Op56Ih3YYztF6ePbRjboU-87XfDZtf2DR9XxD-pbVYjVbyhTGe05B2F_oyd1GGTaPY3p-z19uZlcS8en-4eFtePokQnRzG3AV1R69rV0i7nlXHGULCkC8gLBq1BqsoZ0tZSYbQtpSSpl6YqJFQlqinDw90yDilFqv17bLsQ916C_zHgDwZ8NuB_Dfh9LqlDKWW4byj69bCNff7zv9Y3nuFenQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some matrix equations involving the weighted geometric mean</title><source>Freely Accessible Science Journals</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Dinh, Trung Hoa ; Le, Cong Trinh ; Le, Xuan Dai ; Pham, Tuan Cuong</creator><creatorcontrib>Dinh, Trung Hoa ; Le, Cong Trinh ; Le, Xuan Dai ; Pham, Tuan Cuong</creatorcontrib><description>In this paper, we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those equations and prove the corresponding convergence. Another equations with a different matrix generalization of the weighted geometric mean for scalars are also discussed.</description><identifier>ISSN: 2662-2009</identifier><identifier>EISSN: 2538-225X</identifier><identifier>DOI: 10.1007/s43036-021-00165-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Operator Theory ; Original Paper</subject><ispartof>Advances in operator theory, 2022, Vol.7 (1), Article 2</ispartof><rights>Tusi Mathematical Research Group (TMRG) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23</citedby><cites>FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dinh, Trung Hoa</creatorcontrib><creatorcontrib>Le, Cong Trinh</creatorcontrib><creatorcontrib>Le, Xuan Dai</creatorcontrib><creatorcontrib>Pham, Tuan Cuong</creatorcontrib><title>Some matrix equations involving the weighted geometric mean</title><title>Advances in operator theory</title><addtitle>Adv. Oper. Theory</addtitle><description>In this paper, we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those equations and prove the corresponding convergence. Another equations with a different matrix generalization of the weighted geometric mean for scalars are also discussed.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Original Paper</subject><issn>2662-2009</issn><issn>2538-225X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKf8gehk0mQTPEnxCwQPKngL6e7sdkt3V5Nttf_eaD17mnfgeYfhYexcwoUEKC7TXIEyAlAKAGm02B-xCWplBaJ-O87ZGBQI4E7ZLKU1ACAoZxAm7Op56Ih3YYztF6ePbRjboU-87XfDZtf2DR9XxD-pbVYjVbyhTGe05B2F_oyd1GGTaPY3p-z19uZlcS8en-4eFtePokQnRzG3AV1R69rV0i7nlXHGULCkC8gLBq1BqsoZ0tZSYbQtpSSpl6YqJFQlqinDw90yDilFqv17bLsQ916C_zHgDwZ8NuB_Dfh9LqlDKWW4byj69bCNff7zv9Y3nuFenQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Dinh, Trung Hoa</creator><creator>Le, Cong Trinh</creator><creator>Le, Xuan Dai</creator><creator>Pham, Tuan Cuong</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Some matrix equations involving the weighted geometric mean</title><author>Dinh, Trung Hoa ; Le, Cong Trinh ; Le, Xuan Dai ; Pham, Tuan Cuong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dinh, Trung Hoa</creatorcontrib><creatorcontrib>Le, Cong Trinh</creatorcontrib><creatorcontrib>Le, Xuan Dai</creatorcontrib><creatorcontrib>Pham, Tuan Cuong</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in operator theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dinh, Trung Hoa</au><au>Le, Cong Trinh</au><au>Le, Xuan Dai</au><au>Pham, Tuan Cuong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some matrix equations involving the weighted geometric mean</atitle><jtitle>Advances in operator theory</jtitle><stitle>Adv. Oper. Theory</stitle><date>2022</date><risdate>2022</risdate><volume>7</volume><issue>1</issue><artnum>2</artnum><issn>2662-2009</issn><eissn>2538-225X</eissn><abstract>In this paper, we consider two matrix equations that involve the weighted geometric mean. We use the fixed point theorem in the cone of positive definite matrices to prove the existence of a unique positive definite solution. In addition, we study the multi-step stationary iterative method for those equations and prove the corresponding convergence. Another equations with a different matrix generalization of the weighted geometric mean for scalars are also discussed.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s43036-021-00165-y</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-2009 |
ispartof | Advances in operator theory, 2022, Vol.7 (1), Article 2 |
issn | 2662-2009 2538-225X |
language | eng |
recordid | cdi_crossref_primary_10_1007_s43036_021_00165_y |
source | Freely Accessible Science Journals; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Mathematics Mathematics and Statistics Operator Theory Original Paper |
title | Some matrix equations involving the weighted geometric mean |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20matrix%20equations%20involving%20the%20weighted%20geometric%20mean&rft.jtitle=Advances%20in%20operator%20theory&rft.au=Dinh,%20Trung%20Hoa&rft.date=2022&rft.volume=7&rft.issue=1&rft.artnum=2&rft.issn=2662-2009&rft.eissn=2538-225X&rft_id=info:doi/10.1007/s43036-021-00165-y&rft_dat=%3Ccrossref_sprin%3E10_1007_s43036_021_00165_y%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-48a297f5f9f18b4d6966ea8e5704d62a55013d96e588e7658c11e15b6d710dc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |