Loading…
An online calibration tool for soft sensors: development and experimental tests in a semi-industrial boiler plant
Soft sensors with real time prediction capabilities appear as a profitable solution for hard-to-measure variables whenever hard sensors are difficult to apply or subjected to high operational costs. Nonetheless, the use of soft sensors within industrial applications is still not widespread because o...
Saved in:
Published in: | Brazilian journal of chemical engineering 2020-03, Vol.37 (1), p.189-199 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3 |
container_end_page | 199 |
container_issue | 1 |
container_start_page | 189 |
container_title | Brazilian journal of chemical engineering |
container_volume | 37 |
creator | Parente, Andréa Pereira Valdman, Andrea Folly, Rossana Odette M. de Souza, Maurício Bezerra Fileti, Ana Maria Frattini |
description | Soft sensors with real time prediction capabilities appear as a profitable solution for hard-to-measure variables whenever hard sensors are difficult to apply or subjected to high operational costs. Nonetheless, the use of soft sensors within industrial applications is still not widespread because of the systematic accuracy issues that can be introduced with process plant deviations from nominal operation states. Soft sensor models need to be constantly updated to avoid degradation of their prediction potential. This study presents an innovative view on a well-known artificial neural network (ANN) calibration method by developing a generic online calibration tool that can be used in independent data-driven soft sensors based on ANN multi-layer perceptron (MLP) models. The maintenance framework has been fully tested in a semi-industrial boiler plant to predict real time pollutant emission levels, presenting recalibration time responses up to 1 min, overall r
2
performance above 80% and an intuitive human–machine-interface. |
doi_str_mv | 10.1007/s43153-019-00005-w |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s43153_019_00005_w</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s43153_019_00005_w</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3</originalsourceid><addsrcrecordid>eNp9kMtOAzEMRSMEEkPhB1jlBwJ5TObBrqp4SZXYwDryTDIoVZoMSUrh70kpa-yFZdnXuj4IXTN6wyhtb1MtmBSEsp7QEpLsT1DFmrYjtejEKaooozVpGsHP0UVKG0q5pKKv0MfS4-Cd9QaP4OwQIdvgcQ7B4SlEnMKUcTI-hZjusDafxoV5a3zG4DU2X7OJ9tCCw9mknLD1GIpga4n1epdytGU0BOtMxLMDny_R2QQumau_ukBvD_evqyeyfnl8Xi3XZOQ9ywREXz6TvWhG0ANQXVPoQTItO9m008RHPtR9Y6AzE-OCs5KilYOmgoNptVggfrw7xpBSNJOai1WI34pRdYCmjtBUgaZ-oal9EYmjKJVl_26i2oRd9MXnf6of-wFyYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An online calibration tool for soft sensors: development and experimental tests in a semi-industrial boiler plant</title><source>Springer Nature</source><creator>Parente, Andréa Pereira ; Valdman, Andrea ; Folly, Rossana Odette M. ; de Souza, Maurício Bezerra ; Fileti, Ana Maria Frattini</creator><creatorcontrib>Parente, Andréa Pereira ; Valdman, Andrea ; Folly, Rossana Odette M. ; de Souza, Maurício Bezerra ; Fileti, Ana Maria Frattini</creatorcontrib><description>Soft sensors with real time prediction capabilities appear as a profitable solution for hard-to-measure variables whenever hard sensors are difficult to apply or subjected to high operational costs. Nonetheless, the use of soft sensors within industrial applications is still not widespread because of the systematic accuracy issues that can be introduced with process plant deviations from nominal operation states. Soft sensor models need to be constantly updated to avoid degradation of their prediction potential. This study presents an innovative view on a well-known artificial neural network (ANN) calibration method by developing a generic online calibration tool that can be used in independent data-driven soft sensors based on ANN multi-layer perceptron (MLP) models. The maintenance framework has been fully tested in a semi-industrial boiler plant to predict real time pollutant emission levels, presenting recalibration time responses up to 1 min, overall r
2
performance above 80% and an intuitive human–machine-interface.</description><identifier>ISSN: 0104-6632</identifier><identifier>EISSN: 1678-4383</identifier><identifier>DOI: 10.1007/s43153-019-00005-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Industrial Chemistry/Chemical Engineering ; Original Paper</subject><ispartof>Brazilian journal of chemical engineering, 2020-03, Vol.37 (1), p.189-199</ispartof><rights>Associação Brasileira de Engenharia Química 2020. corrected publication 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3</citedby><cites>FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Parente, Andréa Pereira</creatorcontrib><creatorcontrib>Valdman, Andrea</creatorcontrib><creatorcontrib>Folly, Rossana Odette M.</creatorcontrib><creatorcontrib>de Souza, Maurício Bezerra</creatorcontrib><creatorcontrib>Fileti, Ana Maria Frattini</creatorcontrib><title>An online calibration tool for soft sensors: development and experimental tests in a semi-industrial boiler plant</title><title>Brazilian journal of chemical engineering</title><addtitle>Braz. J. Chem. Eng</addtitle><description>Soft sensors with real time prediction capabilities appear as a profitable solution for hard-to-measure variables whenever hard sensors are difficult to apply or subjected to high operational costs. Nonetheless, the use of soft sensors within industrial applications is still not widespread because of the systematic accuracy issues that can be introduced with process plant deviations from nominal operation states. Soft sensor models need to be constantly updated to avoid degradation of their prediction potential. This study presents an innovative view on a well-known artificial neural network (ANN) calibration method by developing a generic online calibration tool that can be used in independent data-driven soft sensors based on ANN multi-layer perceptron (MLP) models. The maintenance framework has been fully tested in a semi-industrial boiler plant to predict real time pollutant emission levels, presenting recalibration time responses up to 1 min, overall r
2
performance above 80% and an intuitive human–machine-interface.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Original Paper</subject><issn>0104-6632</issn><issn>1678-4383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAzEMRSMEEkPhB1jlBwJ5TObBrqp4SZXYwDryTDIoVZoMSUrh70kpa-yFZdnXuj4IXTN6wyhtb1MtmBSEsp7QEpLsT1DFmrYjtejEKaooozVpGsHP0UVKG0q5pKKv0MfS4-Cd9QaP4OwQIdvgcQ7B4SlEnMKUcTI-hZjusDafxoV5a3zG4DU2X7OJ9tCCw9mknLD1GIpga4n1epdytGU0BOtMxLMDny_R2QQumau_ukBvD_evqyeyfnl8Xi3XZOQ9ywREXz6TvWhG0ANQXVPoQTItO9m008RHPtR9Y6AzE-OCs5KilYOmgoNptVggfrw7xpBSNJOai1WI34pRdYCmjtBUgaZ-oal9EYmjKJVl_26i2oRd9MXnf6of-wFyYg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Parente, Andréa Pereira</creator><creator>Valdman, Andrea</creator><creator>Folly, Rossana Odette M.</creator><creator>de Souza, Maurício Bezerra</creator><creator>Fileti, Ana Maria Frattini</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>An online calibration tool for soft sensors: development and experimental tests in a semi-industrial boiler plant</title><author>Parente, Andréa Pereira ; Valdman, Andrea ; Folly, Rossana Odette M. ; de Souza, Maurício Bezerra ; Fileti, Ana Maria Frattini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parente, Andréa Pereira</creatorcontrib><creatorcontrib>Valdman, Andrea</creatorcontrib><creatorcontrib>Folly, Rossana Odette M.</creatorcontrib><creatorcontrib>de Souza, Maurício Bezerra</creatorcontrib><creatorcontrib>Fileti, Ana Maria Frattini</creatorcontrib><collection>CrossRef</collection><jtitle>Brazilian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parente, Andréa Pereira</au><au>Valdman, Andrea</au><au>Folly, Rossana Odette M.</au><au>de Souza, Maurício Bezerra</au><au>Fileti, Ana Maria Frattini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An online calibration tool for soft sensors: development and experimental tests in a semi-industrial boiler plant</atitle><jtitle>Brazilian journal of chemical engineering</jtitle><stitle>Braz. J. Chem. Eng</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>37</volume><issue>1</issue><spage>189</spage><epage>199</epage><pages>189-199</pages><issn>0104-6632</issn><eissn>1678-4383</eissn><abstract>Soft sensors with real time prediction capabilities appear as a profitable solution for hard-to-measure variables whenever hard sensors are difficult to apply or subjected to high operational costs. Nonetheless, the use of soft sensors within industrial applications is still not widespread because of the systematic accuracy issues that can be introduced with process plant deviations from nominal operation states. Soft sensor models need to be constantly updated to avoid degradation of their prediction potential. This study presents an innovative view on a well-known artificial neural network (ANN) calibration method by developing a generic online calibration tool that can be used in independent data-driven soft sensors based on ANN multi-layer perceptron (MLP) models. The maintenance framework has been fully tested in a semi-industrial boiler plant to predict real time pollutant emission levels, presenting recalibration time responses up to 1 min, overall r
2
performance above 80% and an intuitive human–machine-interface.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s43153-019-00005-w</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0104-6632 |
ispartof | Brazilian journal of chemical engineering, 2020-03, Vol.37 (1), p.189-199 |
issn | 0104-6632 1678-4383 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s43153_019_00005_w |
source | Springer Nature |
subjects | Chemistry Chemistry and Materials Science Industrial Chemistry/Chemical Engineering Original Paper |
title | An online calibration tool for soft sensors: development and experimental tests in a semi-industrial boiler plant |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20online%20calibration%20tool%20for%20soft%20sensors:%20development%20and%20experimental%20tests%20in%20a%20semi-industrial%20boiler%20plant&rft.jtitle=Brazilian%20journal%20of%20chemical%20engineering&rft.au=Parente,%20Andr%C3%A9a%20Pereira&rft.date=2020-03-01&rft.volume=37&rft.issue=1&rft.spage=189&rft.epage=199&rft.pages=189-199&rft.issn=0104-6632&rft.eissn=1678-4383&rft_id=info:doi/10.1007/s43153-019-00005-w&rft_dat=%3Ccrossref_sprin%3E10_1007_s43153_019_00005_w%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |