Loading…

An online calibration tool for soft sensors: development and experimental tests in a semi-industrial boiler plant

Soft sensors with real time prediction capabilities appear as a profitable solution for hard-to-measure variables whenever hard sensors are difficult to apply or subjected to high operational costs. Nonetheless, the use of soft sensors within industrial applications is still not widespread because o...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of chemical engineering 2020-03, Vol.37 (1), p.189-199
Main Authors: Parente, Andréa Pereira, Valdman, Andrea, Folly, Rossana Odette M., de Souza, Maurício Bezerra, Fileti, Ana Maria Frattini
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3
cites cdi_FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3
container_end_page 199
container_issue 1
container_start_page 189
container_title Brazilian journal of chemical engineering
container_volume 37
creator Parente, Andréa Pereira
Valdman, Andrea
Folly, Rossana Odette M.
de Souza, Maurício Bezerra
Fileti, Ana Maria Frattini
description Soft sensors with real time prediction capabilities appear as a profitable solution for hard-to-measure variables whenever hard sensors are difficult to apply or subjected to high operational costs. Nonetheless, the use of soft sensors within industrial applications is still not widespread because of the systematic accuracy issues that can be introduced with process plant deviations from nominal operation states. Soft sensor models need to be constantly updated to avoid degradation of their prediction potential. This study presents an innovative view on a well-known artificial neural network (ANN) calibration method by developing a generic online calibration tool that can be used in independent data-driven soft sensors based on ANN multi-layer perceptron (MLP) models. The maintenance framework has been fully tested in a semi-industrial boiler plant to predict real time pollutant emission levels, presenting recalibration time responses up to 1 min, overall r 2 performance above 80% and an intuitive human–machine-interface.
doi_str_mv 10.1007/s43153-019-00005-w
format article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s43153_019_00005_w</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s43153_019_00005_w</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3</originalsourceid><addsrcrecordid>eNp9kMtOAzEMRSMEEkPhB1jlBwJ5TObBrqp4SZXYwDryTDIoVZoMSUrh70kpa-yFZdnXuj4IXTN6wyhtb1MtmBSEsp7QEpLsT1DFmrYjtejEKaooozVpGsHP0UVKG0q5pKKv0MfS4-Cd9QaP4OwQIdvgcQ7B4SlEnMKUcTI-hZjusDafxoV5a3zG4DU2X7OJ9tCCw9mknLD1GIpga4n1epdytGU0BOtMxLMDny_R2QQumau_ukBvD_evqyeyfnl8Xi3XZOQ9ywREXz6TvWhG0ANQXVPoQTItO9m008RHPtR9Y6AzE-OCs5KilYOmgoNptVggfrw7xpBSNJOai1WI34pRdYCmjtBUgaZ-oal9EYmjKJVl_26i2oRd9MXnf6of-wFyYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An online calibration tool for soft sensors: development and experimental tests in a semi-industrial boiler plant</title><source>Springer Nature</source><creator>Parente, Andréa Pereira ; Valdman, Andrea ; Folly, Rossana Odette M. ; de Souza, Maurício Bezerra ; Fileti, Ana Maria Frattini</creator><creatorcontrib>Parente, Andréa Pereira ; Valdman, Andrea ; Folly, Rossana Odette M. ; de Souza, Maurício Bezerra ; Fileti, Ana Maria Frattini</creatorcontrib><description>Soft sensors with real time prediction capabilities appear as a profitable solution for hard-to-measure variables whenever hard sensors are difficult to apply or subjected to high operational costs. Nonetheless, the use of soft sensors within industrial applications is still not widespread because of the systematic accuracy issues that can be introduced with process plant deviations from nominal operation states. Soft sensor models need to be constantly updated to avoid degradation of their prediction potential. This study presents an innovative view on a well-known artificial neural network (ANN) calibration method by developing a generic online calibration tool that can be used in independent data-driven soft sensors based on ANN multi-layer perceptron (MLP) models. The maintenance framework has been fully tested in a semi-industrial boiler plant to predict real time pollutant emission levels, presenting recalibration time responses up to 1 min, overall r 2 performance above 80% and an intuitive human–machine-interface.</description><identifier>ISSN: 0104-6632</identifier><identifier>EISSN: 1678-4383</identifier><identifier>DOI: 10.1007/s43153-019-00005-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Industrial Chemistry/Chemical Engineering ; Original Paper</subject><ispartof>Brazilian journal of chemical engineering, 2020-03, Vol.37 (1), p.189-199</ispartof><rights>Associação Brasileira de Engenharia Química 2020. corrected publication 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3</citedby><cites>FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Parente, Andréa Pereira</creatorcontrib><creatorcontrib>Valdman, Andrea</creatorcontrib><creatorcontrib>Folly, Rossana Odette M.</creatorcontrib><creatorcontrib>de Souza, Maurício Bezerra</creatorcontrib><creatorcontrib>Fileti, Ana Maria Frattini</creatorcontrib><title>An online calibration tool for soft sensors: development and experimental tests in a semi-industrial boiler plant</title><title>Brazilian journal of chemical engineering</title><addtitle>Braz. J. Chem. Eng</addtitle><description>Soft sensors with real time prediction capabilities appear as a profitable solution for hard-to-measure variables whenever hard sensors are difficult to apply or subjected to high operational costs. Nonetheless, the use of soft sensors within industrial applications is still not widespread because of the systematic accuracy issues that can be introduced with process plant deviations from nominal operation states. Soft sensor models need to be constantly updated to avoid degradation of their prediction potential. This study presents an innovative view on a well-known artificial neural network (ANN) calibration method by developing a generic online calibration tool that can be used in independent data-driven soft sensors based on ANN multi-layer perceptron (MLP) models. The maintenance framework has been fully tested in a semi-industrial boiler plant to predict real time pollutant emission levels, presenting recalibration time responses up to 1 min, overall r 2 performance above 80% and an intuitive human–machine-interface.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Original Paper</subject><issn>0104-6632</issn><issn>1678-4383</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAzEMRSMEEkPhB1jlBwJ5TObBrqp4SZXYwDryTDIoVZoMSUrh70kpa-yFZdnXuj4IXTN6wyhtb1MtmBSEsp7QEpLsT1DFmrYjtejEKaooozVpGsHP0UVKG0q5pKKv0MfS4-Cd9QaP4OwQIdvgcQ7B4SlEnMKUcTI-hZjusDafxoV5a3zG4DU2X7OJ9tCCw9mknLD1GIpga4n1epdytGU0BOtMxLMDny_R2QQumau_ukBvD_evqyeyfnl8Xi3XZOQ9ywREXz6TvWhG0ANQXVPoQTItO9m008RHPtR9Y6AzE-OCs5KilYOmgoNptVggfrw7xpBSNJOai1WI34pRdYCmjtBUgaZ-oal9EYmjKJVl_26i2oRd9MXnf6of-wFyYg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Parente, Andréa Pereira</creator><creator>Valdman, Andrea</creator><creator>Folly, Rossana Odette M.</creator><creator>de Souza, Maurício Bezerra</creator><creator>Fileti, Ana Maria Frattini</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200301</creationdate><title>An online calibration tool for soft sensors: development and experimental tests in a semi-industrial boiler plant</title><author>Parente, Andréa Pereira ; Valdman, Andrea ; Folly, Rossana Odette M. ; de Souza, Maurício Bezerra ; Fileti, Ana Maria Frattini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parente, Andréa Pereira</creatorcontrib><creatorcontrib>Valdman, Andrea</creatorcontrib><creatorcontrib>Folly, Rossana Odette M.</creatorcontrib><creatorcontrib>de Souza, Maurício Bezerra</creatorcontrib><creatorcontrib>Fileti, Ana Maria Frattini</creatorcontrib><collection>CrossRef</collection><jtitle>Brazilian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parente, Andréa Pereira</au><au>Valdman, Andrea</au><au>Folly, Rossana Odette M.</au><au>de Souza, Maurício Bezerra</au><au>Fileti, Ana Maria Frattini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An online calibration tool for soft sensors: development and experimental tests in a semi-industrial boiler plant</atitle><jtitle>Brazilian journal of chemical engineering</jtitle><stitle>Braz. J. Chem. Eng</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>37</volume><issue>1</issue><spage>189</spage><epage>199</epage><pages>189-199</pages><issn>0104-6632</issn><eissn>1678-4383</eissn><abstract>Soft sensors with real time prediction capabilities appear as a profitable solution for hard-to-measure variables whenever hard sensors are difficult to apply or subjected to high operational costs. Nonetheless, the use of soft sensors within industrial applications is still not widespread because of the systematic accuracy issues that can be introduced with process plant deviations from nominal operation states. Soft sensor models need to be constantly updated to avoid degradation of their prediction potential. This study presents an innovative view on a well-known artificial neural network (ANN) calibration method by developing a generic online calibration tool that can be used in independent data-driven soft sensors based on ANN multi-layer perceptron (MLP) models. The maintenance framework has been fully tested in a semi-industrial boiler plant to predict real time pollutant emission levels, presenting recalibration time responses up to 1 min, overall r 2 performance above 80% and an intuitive human–machine-interface.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s43153-019-00005-w</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0104-6632
ispartof Brazilian journal of chemical engineering, 2020-03, Vol.37 (1), p.189-199
issn 0104-6632
1678-4383
language eng
recordid cdi_crossref_primary_10_1007_s43153_019_00005_w
source Springer Nature
subjects Chemistry
Chemistry and Materials Science
Industrial Chemistry/Chemical Engineering
Original Paper
title An online calibration tool for soft sensors: development and experimental tests in a semi-industrial boiler plant
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20online%20calibration%20tool%20for%20soft%20sensors:%20development%20and%20experimental%20tests%20in%20a%20semi-industrial%20boiler%20plant&rft.jtitle=Brazilian%20journal%20of%20chemical%20engineering&rft.au=Parente,%20Andr%C3%A9a%20Pereira&rft.date=2020-03-01&rft.volume=37&rft.issue=1&rft.spage=189&rft.epage=199&rft.pages=189-199&rft.issn=0104-6632&rft.eissn=1678-4383&rft_id=info:doi/10.1007/s43153-019-00005-w&rft_dat=%3Ccrossref_sprin%3E10_1007_s43153_019_00005_w%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-a391005936cadba0d40a9a51d58567ff2c2b496ea8ef12321212375bd032ae7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true