Loading…
Additive stability of frames: Additive stability of frames
Given a frame in a finite dimensional Hilbert space we construct additive perturbations which decrease the condition number of the frame. By iterating this perturbation, we introduce an algorithm that produces a tight frame in a finite number of steps. Additionally, we give sharp bounds on additive...
Saved in:
Published in: | Sampling theory, signal processing, and data analysis signal processing, and data analysis, 2024-12, Vol.22 (2), Article 20 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c172t-6a5f827e3c90e23b020aaf08945d26fd600ea37d494ec0ea6e5b1d418d3f61a93 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Sampling theory, signal processing, and data analysis |
container_volume | 22 |
creator | Asipchuk, Oleg Glidewell, Jacob Rodriguez, Luis |
description | Given a frame in a finite dimensional Hilbert space we construct additive perturbations which decrease the condition number of the frame. By iterating this perturbation, we introduce an algorithm that produces a tight frame in a finite number of steps. Additionally, we give sharp bounds on additive perturbations which preserve frames and we study the effect of appending and erasing vectors to a given tight frame. We also discuss under which conditions our finite-dimensional results are extendable to infinite-dimensional Hilbert spaces. |
doi_str_mv | 10.1007/s43670-024-00094-w |
format | article |
fullrecord | <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s43670_024_00094_w</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s43670_024_00094_w</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-6a5f827e3c90e23b020aaf08945d26fd600ea37d494ec0ea6e5b1d418d3f61a93</originalsourceid><addsrcrecordid>eNp9j81KAzEUhYMoWGpfQFzMC0Rv_ifLUvwpFNzoOmQmN5LSdiQZLX17oyMuXd2zON_hfoRcM7hlAOauSKENUOCSAoCV9HhGZtwIoMpwef6Xmb4ki1K2tcSVAdBiRm6WIaQxfWJTRt-lXRpPzRCbmP0eyxW5iH5XcPF75-T14f5l9UQ3z4_r1XJDe2b4SLVXseUGRW8BueiAg_cRWitV4DoGDYBemCCtxL5GjapjQbI2iKiZt2JO-LTb56GUjNG957T3-eQYuG9FNym6quh-FN2xQmKCSi0f3jC77fCRD_XP_6gvQ7BTNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Additive stability of frames: Additive stability of frames</title><source>Springer Link</source><creator>Asipchuk, Oleg ; Glidewell, Jacob ; Rodriguez, Luis</creator><creatorcontrib>Asipchuk, Oleg ; Glidewell, Jacob ; Rodriguez, Luis</creatorcontrib><description>Given a frame in a finite dimensional Hilbert space we construct additive perturbations which decrease the condition number of the frame. By iterating this perturbation, we introduce an algorithm that produces a tight frame in a finite number of steps. Additionally, we give sharp bounds on additive perturbations which preserve frames and we study the effect of appending and erasing vectors to a given tight frame. We also discuss under which conditions our finite-dimensional results are extendable to infinite-dimensional Hilbert spaces.</description><identifier>ISSN: 2730-5716</identifier><identifier>EISSN: 2730-5724</identifier><identifier>DOI: 10.1007/s43670-024-00094-w</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Abstract Harmonic Analysis ; Machine Learning ; Mathematics ; Mathematics and Statistics ; Original Article ; Signal,Image and Speech Processing</subject><ispartof>Sampling theory, signal processing, and data analysis, 2024-12, Vol.22 (2), Article 20</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c172t-6a5f827e3c90e23b020aaf08945d26fd600ea37d494ec0ea6e5b1d418d3f61a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Asipchuk, Oleg</creatorcontrib><creatorcontrib>Glidewell, Jacob</creatorcontrib><creatorcontrib>Rodriguez, Luis</creatorcontrib><title>Additive stability of frames: Additive stability of frames</title><title>Sampling theory, signal processing, and data analysis</title><addtitle>Sampl. Theory Signal Process. Data Anal</addtitle><description>Given a frame in a finite dimensional Hilbert space we construct additive perturbations which decrease the condition number of the frame. By iterating this perturbation, we introduce an algorithm that produces a tight frame in a finite number of steps. Additionally, we give sharp bounds on additive perturbations which preserve frames and we study the effect of appending and erasing vectors to a given tight frame. We also discuss under which conditions our finite-dimensional results are extendable to infinite-dimensional Hilbert spaces.</description><subject>Abstract Harmonic Analysis</subject><subject>Machine Learning</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Article</subject><subject>Signal,Image and Speech Processing</subject><issn>2730-5716</issn><issn>2730-5724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9j81KAzEUhYMoWGpfQFzMC0Rv_ifLUvwpFNzoOmQmN5LSdiQZLX17oyMuXd2zON_hfoRcM7hlAOauSKENUOCSAoCV9HhGZtwIoMpwef6Xmb4ki1K2tcSVAdBiRm6WIaQxfWJTRt-lXRpPzRCbmP0eyxW5iH5XcPF75-T14f5l9UQ3z4_r1XJDe2b4SLVXseUGRW8BueiAg_cRWitV4DoGDYBemCCtxL5GjapjQbI2iKiZt2JO-LTb56GUjNG957T3-eQYuG9FNym6quh-FN2xQmKCSi0f3jC77fCRD_XP_6gvQ7BTNA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Asipchuk, Oleg</creator><creator>Glidewell, Jacob</creator><creator>Rodriguez, Luis</creator><general>Springer International Publishing</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Additive stability of frames</title><author>Asipchuk, Oleg ; Glidewell, Jacob ; Rodriguez, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-6a5f827e3c90e23b020aaf08945d26fd600ea37d494ec0ea6e5b1d418d3f61a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Machine Learning</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Article</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asipchuk, Oleg</creatorcontrib><creatorcontrib>Glidewell, Jacob</creatorcontrib><creatorcontrib>Rodriguez, Luis</creatorcontrib><collection>CrossRef</collection><jtitle>Sampling theory, signal processing, and data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asipchuk, Oleg</au><au>Glidewell, Jacob</au><au>Rodriguez, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Additive stability of frames: Additive stability of frames</atitle><jtitle>Sampling theory, signal processing, and data analysis</jtitle><stitle>Sampl. Theory Signal Process. Data Anal</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>22</volume><issue>2</issue><artnum>20</artnum><issn>2730-5716</issn><eissn>2730-5724</eissn><abstract>Given a frame in a finite dimensional Hilbert space we construct additive perturbations which decrease the condition number of the frame. By iterating this perturbation, we introduce an algorithm that produces a tight frame in a finite number of steps. Additionally, we give sharp bounds on additive perturbations which preserve frames and we study the effect of appending and erasing vectors to a given tight frame. We also discuss under which conditions our finite-dimensional results are extendable to infinite-dimensional Hilbert spaces.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s43670-024-00094-w</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2730-5716 |
ispartof | Sampling theory, signal processing, and data analysis, 2024-12, Vol.22 (2), Article 20 |
issn | 2730-5716 2730-5724 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s43670_024_00094_w |
source | Springer Link |
subjects | Abstract Harmonic Analysis Machine Learning Mathematics Mathematics and Statistics Original Article Signal,Image and Speech Processing |
title | Additive stability of frames: Additive stability of frames |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A02%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Additive%20stability%20of%20frames:%20Additive%20stability%20of%20frames&rft.jtitle=Sampling%20theory,%20signal%20processing,%20and%20data%20analysis&rft.au=Asipchuk,%20Oleg&rft.date=2024-12-01&rft.volume=22&rft.issue=2&rft.artnum=20&rft.issn=2730-5716&rft.eissn=2730-5724&rft_id=info:doi/10.1007/s43670-024-00094-w&rft_dat=%3Ccrossref_sprin%3E10_1007_s43670_024_00094_w%3C/crossref_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c172t-6a5f827e3c90e23b020aaf08945d26fd600ea37d494ec0ea6e5b1d418d3f61a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |