Loading…
Spatial data modelling of atmospheric water availability and stress in Jharkhand, India
Abstract Due to climate and human activity, water supply in Jharkhand, India, fluctuates. This study measured AWS and AWA in Jharkhand, India. MODIS NDVI and Terra Climate data processed by Google Earth Engine (GEE) are used in the analysis. Based on mean annual values for NDWI, run-off, precipitati...
Saved in:
Published in: | Discover Civil Engineering 2024-10, Vol.1 (1), p.1-15, Article 93 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1976-d70364173489893256e9744aaf82a69f45791002e5560bb634b193874c985e93 |
container_end_page | 15 |
container_issue | 1 |
container_start_page | 1 |
container_title | Discover Civil Engineering |
container_volume | 1 |
creator | Roy, Priyanka Gupta, Saurabh Kumar Singh, Suraj Kumar Kanga, Shruti |
description | Abstract Due to climate and human activity, water supply in Jharkhand, India, fluctuates. This study measured AWS and AWA in Jharkhand, India. MODIS NDVI and Terra Climate data processed by Google Earth Engine (GEE) are used in the analysis. Based on mean annual values for NDWI, run-off, precipitation, and ET, AWS and AWA are categorised. Results show significant regional differences in ET, precipitation, runoff, AWS, and AWA in Jharkhand. Purbi Singhbhum has far higher ET rates than Garhwa, Palamu, and Chatra. High AWS levels in Sahibganj, Godda, Pakur, Garhwa, and Kodarma indicate serious water scarcity. Therefore, these locations need focused water management approaches. Different districts including Giridih, Chatra, Jamtara, Latehar, Simdega, and Hazaribagh have different levels of AWS, highlighting the need for individualised treatments. The AWA index helps resource managers make educated decisions by detecting water-scarce places. Climate variability affects temperatures and precipitation, worsening AWS in high-AWS areas. Water scarcity mitigation requires local infrastructure development and water management measures. To verify remote sensing data accuracy, future study should improve data resolution and include in-situ measurements. These findings can help policymakers and stakeholders in Jharkhand create efficient water resource management strategies to reduce water stress and assure water supply. |
doi_str_mv | 10.1007/s44290-024-00088-6 |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s44290_024_00088_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e79a36b02bc3494fa1661f63a8ad00b9</doaj_id><sourcerecordid>oai_doaj_org_article_e79a36b02bc3494fa1661f63a8ad00b9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1976-d70364173489893256e9744aaf82a69f45791002e5560bb634b193874c985e93</originalsourceid><addsrcrecordid>eNpNkNtKw0AURQdRsGh_wKf5AKNzOZnLoxQvlYIPFnwcTpJJOzVNysyg9O9NWxGf9mFzWLAXITec3XHG9H0CEJYVTEDBGDOmUGdkIiyYgpegzv_dl2Sa0mZ8kpJL0HxCPt53mAN2tMGMdDs0vutCv6JDSzFvh7Rb-xhq-o3ZR4pfGDqsQhfynmLf0JSjT4mGnr6uMX6ux-6Wzvsm4DW5aLFLfvqbV2T59LicvRSLt-f57GFR1NxqVTSaSQVcSzDWWClK5a0GQGyNQGVbKLUdNwpflopVlZJQcSuNhtqa0lt5ReYnbDPgxu1i2GLcuwGDOxZDXDmMOdSdd15blKpioqolWGiRK8VbJdFgw1h1YIkTq45DStG3fzzO3EG0O4l2o2h3FO2U_AFytW7K</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatial data modelling of atmospheric water availability and stress in Jharkhand, India</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Roy, Priyanka ; Gupta, Saurabh Kumar ; Singh, Suraj Kumar ; Kanga, Shruti</creator><creatorcontrib>Roy, Priyanka ; Gupta, Saurabh Kumar ; Singh, Suraj Kumar ; Kanga, Shruti</creatorcontrib><description>Abstract Due to climate and human activity, water supply in Jharkhand, India, fluctuates. This study measured AWS and AWA in Jharkhand, India. MODIS NDVI and Terra Climate data processed by Google Earth Engine (GEE) are used in the analysis. Based on mean annual values for NDWI, run-off, precipitation, and ET, AWS and AWA are categorised. Results show significant regional differences in ET, precipitation, runoff, AWS, and AWA in Jharkhand. Purbi Singhbhum has far higher ET rates than Garhwa, Palamu, and Chatra. High AWS levels in Sahibganj, Godda, Pakur, Garhwa, and Kodarma indicate serious water scarcity. Therefore, these locations need focused water management approaches. Different districts including Giridih, Chatra, Jamtara, Latehar, Simdega, and Hazaribagh have different levels of AWS, highlighting the need for individualised treatments. The AWA index helps resource managers make educated decisions by detecting water-scarce places. Climate variability affects temperatures and precipitation, worsening AWS in high-AWS areas. Water scarcity mitigation requires local infrastructure development and water management measures. To verify remote sensing data accuracy, future study should improve data resolution and include in-situ measurements. These findings can help policymakers and stakeholders in Jharkhand create efficient water resource management strategies to reduce water stress and assure water supply.</description><identifier>ISSN: 2948-1546</identifier><identifier>EISSN: 2948-1546</identifier><identifier>DOI: 10.1007/s44290-024-00088-6</identifier><language>eng</language><publisher>Springer</publisher><subject>Atmospheric water stress ; Google Earth Engine ; MODIS NDVI ; Terra climate ; Water availability ; Water management</subject><ispartof>Discover Civil Engineering, 2024-10, Vol.1 (1), p.1-15, Article 93</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1976-d70364173489893256e9744aaf82a69f45791002e5560bb634b193874c985e93</cites><orcidid>0000-0002-9420-2804 ; 0000-0003-0275-5493 ; 0009-0002-9520-8180 ; 0000-0001-6688-2905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Roy, Priyanka</creatorcontrib><creatorcontrib>Gupta, Saurabh Kumar</creatorcontrib><creatorcontrib>Singh, Suraj Kumar</creatorcontrib><creatorcontrib>Kanga, Shruti</creatorcontrib><title>Spatial data modelling of atmospheric water availability and stress in Jharkhand, India</title><title>Discover Civil Engineering</title><description>Abstract Due to climate and human activity, water supply in Jharkhand, India, fluctuates. This study measured AWS and AWA in Jharkhand, India. MODIS NDVI and Terra Climate data processed by Google Earth Engine (GEE) are used in the analysis. Based on mean annual values for NDWI, run-off, precipitation, and ET, AWS and AWA are categorised. Results show significant regional differences in ET, precipitation, runoff, AWS, and AWA in Jharkhand. Purbi Singhbhum has far higher ET rates than Garhwa, Palamu, and Chatra. High AWS levels in Sahibganj, Godda, Pakur, Garhwa, and Kodarma indicate serious water scarcity. Therefore, these locations need focused water management approaches. Different districts including Giridih, Chatra, Jamtara, Latehar, Simdega, and Hazaribagh have different levels of AWS, highlighting the need for individualised treatments. The AWA index helps resource managers make educated decisions by detecting water-scarce places. Climate variability affects temperatures and precipitation, worsening AWS in high-AWS areas. Water scarcity mitigation requires local infrastructure development and water management measures. To verify remote sensing data accuracy, future study should improve data resolution and include in-situ measurements. These findings can help policymakers and stakeholders in Jharkhand create efficient water resource management strategies to reduce water stress and assure water supply.</description><subject>Atmospheric water stress</subject><subject>Google Earth Engine</subject><subject>MODIS NDVI</subject><subject>Terra climate</subject><subject>Water availability</subject><subject>Water management</subject><issn>2948-1546</issn><issn>2948-1546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkNtKw0AURQdRsGh_wKf5AKNzOZnLoxQvlYIPFnwcTpJJOzVNysyg9O9NWxGf9mFzWLAXITec3XHG9H0CEJYVTEDBGDOmUGdkIiyYgpegzv_dl2Sa0mZ8kpJL0HxCPt53mAN2tMGMdDs0vutCv6JDSzFvh7Rb-xhq-o3ZR4pfGDqsQhfynmLf0JSjT4mGnr6uMX6ux-6Wzvsm4DW5aLFLfvqbV2T59LicvRSLt-f57GFR1NxqVTSaSQVcSzDWWClK5a0GQGyNQGVbKLUdNwpflopVlZJQcSuNhtqa0lt5ReYnbDPgxu1i2GLcuwGDOxZDXDmMOdSdd15blKpioqolWGiRK8VbJdFgw1h1YIkTq45DStG3fzzO3EG0O4l2o2h3FO2U_AFytW7K</recordid><startdate>20241004</startdate><enddate>20241004</enddate><creator>Roy, Priyanka</creator><creator>Gupta, Saurabh Kumar</creator><creator>Singh, Suraj Kumar</creator><creator>Kanga, Shruti</creator><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9420-2804</orcidid><orcidid>https://orcid.org/0000-0003-0275-5493</orcidid><orcidid>https://orcid.org/0009-0002-9520-8180</orcidid><orcidid>https://orcid.org/0000-0001-6688-2905</orcidid></search><sort><creationdate>20241004</creationdate><title>Spatial data modelling of atmospheric water availability and stress in Jharkhand, India</title><author>Roy, Priyanka ; Gupta, Saurabh Kumar ; Singh, Suraj Kumar ; Kanga, Shruti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1976-d70364173489893256e9744aaf82a69f45791002e5560bb634b193874c985e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric water stress</topic><topic>Google Earth Engine</topic><topic>MODIS NDVI</topic><topic>Terra climate</topic><topic>Water availability</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Priyanka</creatorcontrib><creatorcontrib>Gupta, Saurabh Kumar</creatorcontrib><creatorcontrib>Singh, Suraj Kumar</creatorcontrib><creatorcontrib>Kanga, Shruti</creatorcontrib><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Discover Civil Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Priyanka</au><au>Gupta, Saurabh Kumar</au><au>Singh, Suraj Kumar</au><au>Kanga, Shruti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial data modelling of atmospheric water availability and stress in Jharkhand, India</atitle><jtitle>Discover Civil Engineering</jtitle><date>2024-10-04</date><risdate>2024</risdate><volume>1</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>93</artnum><issn>2948-1546</issn><eissn>2948-1546</eissn><abstract>Abstract Due to climate and human activity, water supply in Jharkhand, India, fluctuates. This study measured AWS and AWA in Jharkhand, India. MODIS NDVI and Terra Climate data processed by Google Earth Engine (GEE) are used in the analysis. Based on mean annual values for NDWI, run-off, precipitation, and ET, AWS and AWA are categorised. Results show significant regional differences in ET, precipitation, runoff, AWS, and AWA in Jharkhand. Purbi Singhbhum has far higher ET rates than Garhwa, Palamu, and Chatra. High AWS levels in Sahibganj, Godda, Pakur, Garhwa, and Kodarma indicate serious water scarcity. Therefore, these locations need focused water management approaches. Different districts including Giridih, Chatra, Jamtara, Latehar, Simdega, and Hazaribagh have different levels of AWS, highlighting the need for individualised treatments. The AWA index helps resource managers make educated decisions by detecting water-scarce places. Climate variability affects temperatures and precipitation, worsening AWS in high-AWS areas. Water scarcity mitigation requires local infrastructure development and water management measures. To verify remote sensing data accuracy, future study should improve data resolution and include in-situ measurements. These findings can help policymakers and stakeholders in Jharkhand create efficient water resource management strategies to reduce water stress and assure water supply.</abstract><pub>Springer</pub><doi>10.1007/s44290-024-00088-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9420-2804</orcidid><orcidid>https://orcid.org/0000-0003-0275-5493</orcidid><orcidid>https://orcid.org/0009-0002-9520-8180</orcidid><orcidid>https://orcid.org/0000-0001-6688-2905</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2948-1546 |
ispartof | Discover Civil Engineering, 2024-10, Vol.1 (1), p.1-15, Article 93 |
issn | 2948-1546 2948-1546 |
language | eng |
recordid | cdi_crossref_primary_10_1007_s44290_024_00088_6 |
source | Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Atmospheric water stress Google Earth Engine MODIS NDVI Terra climate Water availability Water management |
title | Spatial data modelling of atmospheric water availability and stress in Jharkhand, India |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20data%20modelling%20of%20atmospheric%20water%20availability%20and%20stress%20in%20Jharkhand,%20India&rft.jtitle=Discover%20Civil%20Engineering&rft.au=Roy,%20Priyanka&rft.date=2024-10-04&rft.volume=1&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=93&rft.issn=2948-1546&rft.eissn=2948-1546&rft_id=info:doi/10.1007/s44290-024-00088-6&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e79a36b02bc3494fa1661f63a8ad00b9%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1976-d70364173489893256e9744aaf82a69f45791002e5560bb634b193874c985e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |