Loading…

Spatial data modelling of atmospheric water availability and stress in Jharkhand, India

Abstract Due to climate and human activity, water supply in Jharkhand, India, fluctuates. This study measured AWS and AWA in Jharkhand, India. MODIS NDVI and Terra Climate data processed by Google Earth Engine (GEE) are used in the analysis. Based on mean annual values for NDWI, run-off, precipitati...

Full description

Saved in:
Bibliographic Details
Published in:Discover Civil Engineering 2024-10, Vol.1 (1), p.1-15, Article 93
Main Authors: Roy, Priyanka, Gupta, Saurabh Kumar, Singh, Suraj Kumar, Kanga, Shruti
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1976-d70364173489893256e9744aaf82a69f45791002e5560bb634b193874c985e93
container_end_page 15
container_issue 1
container_start_page 1
container_title Discover Civil Engineering
container_volume 1
creator Roy, Priyanka
Gupta, Saurabh Kumar
Singh, Suraj Kumar
Kanga, Shruti
description Abstract Due to climate and human activity, water supply in Jharkhand, India, fluctuates. This study measured AWS and AWA in Jharkhand, India. MODIS NDVI and Terra Climate data processed by Google Earth Engine (GEE) are used in the analysis. Based on mean annual values for NDWI, run-off, precipitation, and ET, AWS and AWA are categorised. Results show significant regional differences in ET, precipitation, runoff, AWS, and AWA in Jharkhand. Purbi Singhbhum has far higher ET rates than Garhwa, Palamu, and Chatra. High AWS levels in Sahibganj, Godda, Pakur, Garhwa, and Kodarma indicate serious water scarcity. Therefore, these locations need focused water management approaches. Different districts including Giridih, Chatra, Jamtara, Latehar, Simdega, and Hazaribagh have different levels of AWS, highlighting the need for individualised treatments. The AWA index helps resource managers make educated decisions by detecting water-scarce places. Climate variability affects temperatures and precipitation, worsening AWS in high-AWS areas. Water scarcity mitigation requires local infrastructure development and water management measures. To verify remote sensing data accuracy, future study should improve data resolution and include in-situ measurements. These findings can help policymakers and stakeholders in Jharkhand create efficient water resource management strategies to reduce water stress and assure water supply.
doi_str_mv 10.1007/s44290-024-00088-6
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s44290_024_00088_6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_e79a36b02bc3494fa1661f63a8ad00b9</doaj_id><sourcerecordid>oai_doaj_org_article_e79a36b02bc3494fa1661f63a8ad00b9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1976-d70364173489893256e9744aaf82a69f45791002e5560bb634b193874c985e93</originalsourceid><addsrcrecordid>eNpNkNtKw0AURQdRsGh_wKf5AKNzOZnLoxQvlYIPFnwcTpJJOzVNysyg9O9NWxGf9mFzWLAXITec3XHG9H0CEJYVTEDBGDOmUGdkIiyYgpegzv_dl2Sa0mZ8kpJL0HxCPt53mAN2tMGMdDs0vutCv6JDSzFvh7Rb-xhq-o3ZR4pfGDqsQhfynmLf0JSjT4mGnr6uMX6ux-6Wzvsm4DW5aLFLfvqbV2T59LicvRSLt-f57GFR1NxqVTSaSQVcSzDWWClK5a0GQGyNQGVbKLUdNwpflopVlZJQcSuNhtqa0lt5ReYnbDPgxu1i2GLcuwGDOxZDXDmMOdSdd15blKpioqolWGiRK8VbJdFgw1h1YIkTq45DStG3fzzO3EG0O4l2o2h3FO2U_AFytW7K</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spatial data modelling of atmospheric water availability and stress in Jharkhand, India</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Roy, Priyanka ; Gupta, Saurabh Kumar ; Singh, Suraj Kumar ; Kanga, Shruti</creator><creatorcontrib>Roy, Priyanka ; Gupta, Saurabh Kumar ; Singh, Suraj Kumar ; Kanga, Shruti</creatorcontrib><description>Abstract Due to climate and human activity, water supply in Jharkhand, India, fluctuates. This study measured AWS and AWA in Jharkhand, India. MODIS NDVI and Terra Climate data processed by Google Earth Engine (GEE) are used in the analysis. Based on mean annual values for NDWI, run-off, precipitation, and ET, AWS and AWA are categorised. Results show significant regional differences in ET, precipitation, runoff, AWS, and AWA in Jharkhand. Purbi Singhbhum has far higher ET rates than Garhwa, Palamu, and Chatra. High AWS levels in Sahibganj, Godda, Pakur, Garhwa, and Kodarma indicate serious water scarcity. Therefore, these locations need focused water management approaches. Different districts including Giridih, Chatra, Jamtara, Latehar, Simdega, and Hazaribagh have different levels of AWS, highlighting the need for individualised treatments. The AWA index helps resource managers make educated decisions by detecting water-scarce places. Climate variability affects temperatures and precipitation, worsening AWS in high-AWS areas. Water scarcity mitigation requires local infrastructure development and water management measures. To verify remote sensing data accuracy, future study should improve data resolution and include in-situ measurements. These findings can help policymakers and stakeholders in Jharkhand create efficient water resource management strategies to reduce water stress and assure water supply.</description><identifier>ISSN: 2948-1546</identifier><identifier>EISSN: 2948-1546</identifier><identifier>DOI: 10.1007/s44290-024-00088-6</identifier><language>eng</language><publisher>Springer</publisher><subject>Atmospheric water stress ; Google Earth Engine ; MODIS NDVI ; Terra climate ; Water availability ; Water management</subject><ispartof>Discover Civil Engineering, 2024-10, Vol.1 (1), p.1-15, Article 93</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1976-d70364173489893256e9744aaf82a69f45791002e5560bb634b193874c985e93</cites><orcidid>0000-0002-9420-2804 ; 0000-0003-0275-5493 ; 0009-0002-9520-8180 ; 0000-0001-6688-2905</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Roy, Priyanka</creatorcontrib><creatorcontrib>Gupta, Saurabh Kumar</creatorcontrib><creatorcontrib>Singh, Suraj Kumar</creatorcontrib><creatorcontrib>Kanga, Shruti</creatorcontrib><title>Spatial data modelling of atmospheric water availability and stress in Jharkhand, India</title><title>Discover Civil Engineering</title><description>Abstract Due to climate and human activity, water supply in Jharkhand, India, fluctuates. This study measured AWS and AWA in Jharkhand, India. MODIS NDVI and Terra Climate data processed by Google Earth Engine (GEE) are used in the analysis. Based on mean annual values for NDWI, run-off, precipitation, and ET, AWS and AWA are categorised. Results show significant regional differences in ET, precipitation, runoff, AWS, and AWA in Jharkhand. Purbi Singhbhum has far higher ET rates than Garhwa, Palamu, and Chatra. High AWS levels in Sahibganj, Godda, Pakur, Garhwa, and Kodarma indicate serious water scarcity. Therefore, these locations need focused water management approaches. Different districts including Giridih, Chatra, Jamtara, Latehar, Simdega, and Hazaribagh have different levels of AWS, highlighting the need for individualised treatments. The AWA index helps resource managers make educated decisions by detecting water-scarce places. Climate variability affects temperatures and precipitation, worsening AWS in high-AWS areas. Water scarcity mitigation requires local infrastructure development and water management measures. To verify remote sensing data accuracy, future study should improve data resolution and include in-situ measurements. These findings can help policymakers and stakeholders in Jharkhand create efficient water resource management strategies to reduce water stress and assure water supply.</description><subject>Atmospheric water stress</subject><subject>Google Earth Engine</subject><subject>MODIS NDVI</subject><subject>Terra climate</subject><subject>Water availability</subject><subject>Water management</subject><issn>2948-1546</issn><issn>2948-1546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkNtKw0AURQdRsGh_wKf5AKNzOZnLoxQvlYIPFnwcTpJJOzVNysyg9O9NWxGf9mFzWLAXITec3XHG9H0CEJYVTEDBGDOmUGdkIiyYgpegzv_dl2Sa0mZ8kpJL0HxCPt53mAN2tMGMdDs0vutCv6JDSzFvh7Rb-xhq-o3ZR4pfGDqsQhfynmLf0JSjT4mGnr6uMX6ux-6Wzvsm4DW5aLFLfvqbV2T59LicvRSLt-f57GFR1NxqVTSaSQVcSzDWWClK5a0GQGyNQGVbKLUdNwpflopVlZJQcSuNhtqa0lt5ReYnbDPgxu1i2GLcuwGDOxZDXDmMOdSdd15blKpioqolWGiRK8VbJdFgw1h1YIkTq45DStG3fzzO3EG0O4l2o2h3FO2U_AFytW7K</recordid><startdate>20241004</startdate><enddate>20241004</enddate><creator>Roy, Priyanka</creator><creator>Gupta, Saurabh Kumar</creator><creator>Singh, Suraj Kumar</creator><creator>Kanga, Shruti</creator><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9420-2804</orcidid><orcidid>https://orcid.org/0000-0003-0275-5493</orcidid><orcidid>https://orcid.org/0009-0002-9520-8180</orcidid><orcidid>https://orcid.org/0000-0001-6688-2905</orcidid></search><sort><creationdate>20241004</creationdate><title>Spatial data modelling of atmospheric water availability and stress in Jharkhand, India</title><author>Roy, Priyanka ; Gupta, Saurabh Kumar ; Singh, Suraj Kumar ; Kanga, Shruti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1976-d70364173489893256e9744aaf82a69f45791002e5560bb634b193874c985e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric water stress</topic><topic>Google Earth Engine</topic><topic>MODIS NDVI</topic><topic>Terra climate</topic><topic>Water availability</topic><topic>Water management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Priyanka</creatorcontrib><creatorcontrib>Gupta, Saurabh Kumar</creatorcontrib><creatorcontrib>Singh, Suraj Kumar</creatorcontrib><creatorcontrib>Kanga, Shruti</creatorcontrib><collection>CrossRef</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Discover Civil Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Priyanka</au><au>Gupta, Saurabh Kumar</au><au>Singh, Suraj Kumar</au><au>Kanga, Shruti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial data modelling of atmospheric water availability and stress in Jharkhand, India</atitle><jtitle>Discover Civil Engineering</jtitle><date>2024-10-04</date><risdate>2024</risdate><volume>1</volume><issue>1</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><artnum>93</artnum><issn>2948-1546</issn><eissn>2948-1546</eissn><abstract>Abstract Due to climate and human activity, water supply in Jharkhand, India, fluctuates. This study measured AWS and AWA in Jharkhand, India. MODIS NDVI and Terra Climate data processed by Google Earth Engine (GEE) are used in the analysis. Based on mean annual values for NDWI, run-off, precipitation, and ET, AWS and AWA are categorised. Results show significant regional differences in ET, precipitation, runoff, AWS, and AWA in Jharkhand. Purbi Singhbhum has far higher ET rates than Garhwa, Palamu, and Chatra. High AWS levels in Sahibganj, Godda, Pakur, Garhwa, and Kodarma indicate serious water scarcity. Therefore, these locations need focused water management approaches. Different districts including Giridih, Chatra, Jamtara, Latehar, Simdega, and Hazaribagh have different levels of AWS, highlighting the need for individualised treatments. The AWA index helps resource managers make educated decisions by detecting water-scarce places. Climate variability affects temperatures and precipitation, worsening AWS in high-AWS areas. Water scarcity mitigation requires local infrastructure development and water management measures. To verify remote sensing data accuracy, future study should improve data resolution and include in-situ measurements. These findings can help policymakers and stakeholders in Jharkhand create efficient water resource management strategies to reduce water stress and assure water supply.</abstract><pub>Springer</pub><doi>10.1007/s44290-024-00088-6</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9420-2804</orcidid><orcidid>https://orcid.org/0000-0003-0275-5493</orcidid><orcidid>https://orcid.org/0009-0002-9520-8180</orcidid><orcidid>https://orcid.org/0000-0001-6688-2905</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2948-1546
ispartof Discover Civil Engineering, 2024-10, Vol.1 (1), p.1-15, Article 93
issn 2948-1546
2948-1546
language eng
recordid cdi_crossref_primary_10_1007_s44290_024_00088_6
source Springer Nature - SpringerLink Journals - Fully Open Access
subjects Atmospheric water stress
Google Earth Engine
MODIS NDVI
Terra climate
Water availability
Water management
title Spatial data modelling of atmospheric water availability and stress in Jharkhand, India
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20data%20modelling%20of%20atmospheric%20water%20availability%20and%20stress%20in%20Jharkhand,%20India&rft.jtitle=Discover%20Civil%20Engineering&rft.au=Roy,%20Priyanka&rft.date=2024-10-04&rft.volume=1&rft.issue=1&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.artnum=93&rft.issn=2948-1546&rft.eissn=2948-1546&rft_id=info:doi/10.1007/s44290-024-00088-6&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_e79a36b02bc3494fa1661f63a8ad00b9%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1976-d70364173489893256e9744aaf82a69f45791002e5560bb634b193874c985e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true